7,158 research outputs found

    Pulsar extinction

    Get PDF
    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius

    Optical radiation from the Crab pulsar

    Get PDF
    Possible mechanisms for producing the optical radiation from the Crab pulsar are proposed and discussed. There are severe difficulties in interpreting the radiation as being produced by an incoherent process, whether it be synchrotron radiation, inverse-Compton radiation or curvature radiation. It is proposed therefore that radiation in the optical part of the spectrum is coherent. In the polar cap model, a small bunch of electrons and positrons forms near each primary electron as a result of the pair-production cascade process. Ambient electric fields give rise to energy separation, as a result of which either the electrons or positrons will dominate the radiation from each bunch. The roll-off in the infrared is ascribed to synchrotron absorption by electrons and positrons located between the surface of the star and the force-balance radius. Various consequences of this model, which may be subjected to observational test, are discussed

    The Sivers Function from SIDIS Data

    Full text link
    We study the Sivers effect in transverse single spin asymmetries (SSA) for pion and kaon production in Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes. We perform a fit of A^{sin(phi_h-phi_S)}_UT taking into account the recent data from HERMES and COMPASS Collaborations, which allow a new determination of the Sivers distribution functions for quark and anti-quark with u, d and also s flavours. Estimates for forthcoming SIDIS experiments at COMPASS and JLab are given.Comment: 4 pages, 1 figure. To appear in the proceedings of the XVI International Workshop on Deep-Inelastic Scattering and Related Subjects, DIS 2008, London, U.K., 7-11 April 200

    On the effect of Ti on Oxidation Behaviour of a Polycrystalline Nickel-based Superalloy

    Get PDF
    Titanium is commonly added to nickel superalloys but has a well-documented detrimental effect on oxidation resistance. The present work constitutes the first atomistic-scale quantitative measurements of grain boundary and bulk compositions in the oxide scale of a current generation polycrystalline nickel superalloy performed through atom probe tomography. Titanium was found to be particularly detrimental to oxide scale growth through grain boundary diffusion

    Analytical solution of two-layer beam taking into account interlayer slip and shear deformation

    Get PDF
    A mathematical model is proposed and its analytical solution derived for the analysis of the geometrically and materially linear two-layer beams with different material and geometric characteristics of an individual layer. The model takes into account the effect of the transverse shear deformation on displacements in each layer. The analytical study is carried out to evaluate the influence of the transverse shear deformation on the static and kinematic quantities. We study a simply supported two-layer planar beam subjected to the uniformly distributed load. Parametric studies have been performed to investigate the influence of shear by varying material and geometric parameters, such as interlayer slip modulus (K), flexural-to-shear moduli ratios (E/G) and span-to-depth ratios (L/h). The comparison of the results for vertical deflections shows that shear deformations are more important for high slip modulus, for ``short'' beams with small L/h ratios, and beams with high E/G ratios. In these cases, the effect of the shear deformations becomes significant and has to be addressed in design. It also becomes apparent that models, which consider the partial interaction between the layers, should be employed if beams have very flexible connections

    Families with infants: a general approach to solve hard partition problems

    Full text link
    We introduce a general approach for solving partition problems where the goal is to represent a given set as a union (either disjoint or not) of subsets satisfying certain properties. Many NP-hard problems can be naturally stated as such partition problems. We show that if one can find a large enough system of so-called families with infants for a given problem, then this problem can be solved faster than by a straightforward algorithm. We use this approach to improve known bounds for several NP-hard problems as well as to simplify the proofs of several known results. For the chromatic number problem we present an algorithm with O((2ε(d))n)O^*((2-\varepsilon(d))^n) time and exponential space for graphs of average degree dd. This improves the algorithm by Bj\"{o}rklund et al. [Theory Comput. Syst. 2010] that works for graphs of bounded maximum (as opposed to average) degree and closes an open problem stated by Cygan and Pilipczuk [ICALP 2013]. For the traveling salesman problem we give an algorithm working in O((2ε(d))n)O^*((2-\varepsilon(d))^n) time and polynomial space for graphs of average degree dd. The previously known results of this kind is a polyspace algorithm by Bj\"{o}rklund et al. [ICALP 2008] for graphs of bounded maximum degree and an exponential space algorithm for bounded average degree by Cygan and Pilipczuk [ICALP 2013]. For counting perfect matching in graphs of average degree~dd we present an algorithm with running time O((2ε(d))n/2)O^*((2-\varepsilon(d))^{n/2}) and polynomial space. Recent algorithms of this kind due to Cygan, Pilipczuk [ICALP 2013] and Izumi, Wadayama [FOCS 2012] (for bipartite graphs only) use exponential space.Comment: 18 pages, a revised version of this paper is available at http://arxiv.org/abs/1410.220

    Growth rate of small-scale dynamo at low magnetic Prandtl numbers

    Full text link
    In this study we discuss two key issues related to a small-scale dynamo instability at low magnetic Prandtl numbers and large magnetic Reynolds numbers, namely: (i) the scaling for the growth rate of small-scale dynamo instability in the vicinity of the dynamo threshold; (ii) the existence of the Golitsyn spectrum of magnetic fluctuations in small-scale dynamos. There are two different asymptotics for the small-scale dynamo growth rate: in the vicinity of the threshold of the excitation of the small-scale dynamo instability, λln(Rm/Rmcr)\lambda \propto \ln({\rm Rm}/ {\rm Rm}^{\rm cr}), and when the magnetic Reynolds number is much larger than the threshold of the excitation of the small-scale dynamo instability, λRm1/2\lambda \propto {\rm Rm}^{1/2}, where Rmcr{\rm Rm}^{\rm cr} is the small-scale dynamo instability threshold in the magnetic Reynolds number Rm{\rm Rm}. We demonstrated that the existence of the Golitsyn spectrum of magnetic fluctuations requires a finite correlation time of the random velocity field. On the other hand, the influence of the Golitsyn spectrum on the small-scale dynamo instability is minor. This is the reason why it is so difficult to observe this spectrum in direct numerical simulations for the small-scale dynamo with low magnetic Prandtl numbers.Comment: 14 pages, 1 figure, revised versio

    Open questions in the study of population III star formation

    Full text link
    The first stars were key drivers of early cosmic evolution. We review the main physical elements of the current consensus view, positing that the first stars were predominantly very massive. We continue with a discussion of important open questions that confront the standard model. Among them are uncertainties in the atomic and molecular physics of the hydrogen and helium gas, the multiplicity of stars that form in minihalos, and the possible existence of two separate modes of metal-free star formation.Comment: 15 pages, 2 figures. To appear in the conference proceedings for IAU Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxie

    Local Anisotropy of Fluids using Minkowski Tensors

    Full text link
    Statistics of the free volume available to individual particles have previously been studied for simple and complex fluids, granular matter, amorphous solids, and structural glasses. Minkowski tensors provide a set of shape measures that are based on strong mathematical theorems and easily computed for polygonal and polyhedral bodies such as free volume cells (Voronoi cells). They characterize the local structure beyond the two-point correlation function and are suitable to define indices 0βνa,b10\leq \beta_\nu^{a,b}\leq 1 of local anisotropy. Here, we analyze the statistics of Minkowski tensors for configurations of simple liquid models, including the ideal gas (Poisson point process), the hard disks and hard spheres ensemble, and the Lennard-Jones fluid. We show that Minkowski tensors provide a robust characterization of local anisotropy, which ranges from βνa,b0.3\beta_\nu^{a,b}\approx 0.3 for vapor phases to βνa,b1\beta_\nu^{a,b}\to 1 for ordered solids. We find that for fluids, local anisotropy decreases monotonously with increasing free volume and randomness of particle positions. Furthermore, the local anisotropy indices βνa,b\beta_\nu^{a,b} are sensitive to structural transitions in these simple fluids, as has been previously shown in granular systems for the transition from loose to jammed bead packs
    corecore