26 research outputs found
How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis
Objective: To determine the accuracy of wrist and arm-worn activity monitors’ estimates of energy expenditure (EE).
Data sources: SportDISCUS (EBSCOHost), PubMed, MEDLINE (Ovid), PsycINFO (EBSCOHost), Embase (Ovid) and CINAHL (EBSCOHost).
Design: A random effects meta-analysis was performed to evaluate the difference in EE estimates between activity monitors and criterion measurements. Moderator analyses were conducted to determine the benefit of additional sensors and to compare the accuracy of devices used for research purposes with commercially available devices.
Eligibility criteria: We included studies validating EE estimates from wrist-worn or arm-worn activity monitors against criterion measures (indirect calorimetry, room calorimeters and doubly labelled water) in healthy adult populations.
Results: 60 studies (104 effect sizes) were included in the meta-analysis. Devices showed variable accuracy depending on activity type. Large and significant heterogeneity was observed for many devices (I2 >75%). Combining heart rate or heat sensing technology with accelerometry decreased the error in most activity types. Research-grade devices were statistically more accurate for comparisons of total EE but less accurate than commercial devices during ambulatory activity and sedentary tasks.
Conclusions: EE estimates from wrist and arm-worn devices differ in accuracy depending on activity type. Addition of physiological sensors improves estimates of EE, and research-grade devices are superior for total EE. These data highlight the need to improve estimates of EE from wearable devices, and one way this can be achieved is with the addition of heart rate to accelerometry.
PROSPEROregistration number: CRD42018085016
Weekly, seasonal and holiday body weight fluctuation patterns among individuals engaged in a European multi-centre behavioural weight loss maintenance intervention
Background:
Technological advances in remote monitoring offer new opportunities to quantify body weight patterns in free-living populations. This paper describes body weight fluctuation patterns in response to weekly, holiday (Christmas) and seasonal time periods in a large group of individuals engaged in a weight loss maintenance intervention.
Methods:
Data was collected as part The NoHoW Project which was a pan-European weight loss maintenance trial. Three eligible groups were defined for weekly, holiday and seasonal analyses, resulting in inclusion of 1,421, 1,062 and 1,242 participants, respectively. Relative weight patterns were modelled on a time series following removal of trends and grouped by gender, country, BMI and age.
Results:
Within-week fluctuations of 0.35% were observed, characterised by weekend weight gain and weekday reduction which differed between all groups. Over the Christmas period, weight increased by a mean 1.35% and was not fully compensated for in following months, with some differences between countries observed. Seasonal patterns were primarily characterised by the effect of Christmas weight gain and generally not different between groups.
Conclusions:
This evidence may improve current understanding of regular body weight fluctuation patterns and help target future weight management interventions towards periods, and in groups, where weight gain is anticipated
A novel scaling methodology to reduce the biases associated with missing data from commercial activity monitors
Background
Commercial physical activity monitors have wide utility in the assessment of physical activity in research and clinical settings, however, the removal of devices results in missing data and has the potential to bias study conclusions. This study aimed to evaluate methods to address missingness in data collected from commercial activity monitors.
Methods
This study utilised 1526 days of near complete data from 109 adults participating in a European weight loss maintenance study (NoHoW). We conducted simulation experiments to test a novel scaling methodology (NoHoW method) and alternative imputation strategies (overall/individual mean imputation, overall/individual multiple imputation, Kalman imputation and random forest imputation). Methods were compared for hourly, daily and 14-day physical activity estimates for steps, total daily energy expenditure (TDEE) and time in physical activity categories. In a second simulation study, individual multiple imputation, Kalman imputation and the NoHoW method were tested at different positions and quantities of missingness. Equivalence testing and root mean squared error (RMSE) were used to evaluate the ability of each of the strategies relative to the true data.
Results
The NoHoW method, Kalman imputation and multiple imputation methods remained statistically equivalent (p<0.05) for all physical activity metrics at the 14-day level. In the second simulation study, RMSE tended to increase with increased missingness. Multiple imputation showed the smallest RMSE for Steps and TDEE at lower levels of missingness (<19%) and the Kalman and NoHoW methods were generally superior for imputing time in physical activity categories.
Conclusion
Individual centred imputation approaches (NoHoW method, Kalman imputation and individual Multiple imputation) offer an effective means to reduce the biases associated with missing data from activity monitors and maximise data retention
Comparison of the Validity and Generalizability of Machine Learning Algorithms for the Prediction of Energy Expenditure: Validation Study
Background:
Accurate solutions for the estimation of physical activity and energy expenditure at scale are needed for a range of medical and health research fields. Machine learning techniques show promise in research-grade accelerometers, and some evidence indicates that these techniques can be applied to more scalable commercial devices.
Objective:
This study aims to test the validity and out-of-sample generalizability of algorithms for the prediction of energy expenditure in several wearables (ie, Fitbit Charge 2, ActiGraph GT3-x, SenseWear Armband Mini, and Polar H7) using two laboratory data sets comprising different activities.
Methods:
Two laboratory studies (study 1: n=59, age 44.4 years, weight 75.7 kg; study 2: n=30, age=31.9 years, weight=70.6 kg), in which adult participants performed a sequential lab-based activity protocol consisting of resting, household, ambulatory, and nonambulatory tasks, were combined in this study. In both studies, accelerometer and physiological data were collected from the wearables alongside energy expenditure using indirect calorimetry. Three regression algorithms were used to predict metabolic equivalents (METs; ie, random forest, gradient boosting, and neural networks), and five classification algorithms (ie, k-nearest neighbor, support vector machine, random forest, gradient boosting, and neural networks) were used for physical activity intensity classification as sedentary, light, or moderate to vigorous. Algorithms were evaluated using leave-one-subject-out cross-validations and out-of-sample validations.
Results:
The root mean square error (RMSE) was lowest for gradient boosting applied to SenseWear and Polar H7 data (0.91 METs), and in the classification task, gradient boost applied to SenseWear and Polar H7 was the most accurate (85.5%). Fitbit models achieved an RMSE of 1.36 METs and 78.2% accuracy for classification. Errors tended to increase in out-of-sample validations with the SenseWear neural network achieving RMSE values of 1.22 METs in the regression tasks and the SenseWear gradient boost and random forest achieving an accuracy of 80% in classification tasks.
Conclusions:
Algorithms trained on combined data sets demonstrated high predictive accuracy, with a tendency for superior performance of random forests and gradient boosting for most but not all wearable devices. Predictions were poorer in the between-study validations, which creates uncertainty regarding the generalizability of the tested algorithms
Data imputation and body weight variability calculation using linear and non-linear methods in data collected from digital smart scales: a simulation and validation study
Background: Body weight variability (BWV) is common in the general population and may act as a risk factor for obesity or diseases. The correct identification of these patterns may have prognostic or predictive value in clinical and research settings. With advancements in technology allowing for the frequent collection of body weight data from electronic smart scales, new opportunities to analyze and identify patterns in body weight data are available.
Objective: This study aims to compare multiple methods of data imputation and BWV calculation using linear and nonlinear approaches
Methods: In total, 50 participants from an ongoing weight loss maintenance study (the NoHoW study) were selected to develop the procedure. We addressed the following aspects of data analysis: cleaning, imputation, detrending, and calculation of total and local BWV. To test imputation, missing data were simulated at random and using real patterns of missingness. A total of 10 imputation strategies were tested. Next, BWV was calculated using linear and nonlinear approaches, and the effects of missing data and data imputation on these estimates were investigated.
Results: Body weight imputation using structural modeling with Kalman smoothing or an exponentially weighted moving average provided the best agreement with observed values (root mean square error range 0.62%-0.64%). Imputation performance decreased with missingness and was similar between random and nonrandom simulations. Errors in BWV estimations from missing simulated data sets were low (2%-7% with 80% missing data or a mean of 67, SD 40.1 available body weights) compared with that of imputation strategies where errors were significantly greater, varying by imputation method.
Conclusions: The decision to impute body weight data depends on the purpose of the analysis. Directions for the best performing imputation methods are provided. For the purpose of estimating BWV, data imputation should not be conducted. Linear and nonlinear methods of estimating BWV provide reasonably accurate estimates under high proportions (80%) of missing data
The validity of two widely used commercial and research-grade activity monitors, during resting, household and activity behaviours
Wearable devices are increasingly prevalent in research environments for the estimation of energy expenditure (EE) and heart rate (HR). The aim of this study was to validate the HR and EE estimates of the Fitbit charge 2 (FC2), and the EE estimates of the Sensewear armband mini (SWA). We recruited 59 healthy adults to participate in walking, running, cycling, sedentary and household tasks. Estimates of HR from the FC2 were compared to a HR chest strap (Polar) and EE to a stationary metabolic cart (Vyntus CPX). The SWA overestimated overall EE by 0.03 kcal/min−1 and was statistically equivalent to the criterion measure, with a mean absolute percentage error (MAPE) of 29%. In contrast, the FC2 was not equivalent overall (MAPE = 44%). In household tasks, MAPE values of 93% and 83% were observed for the FC2 and SWA, respectively. The FC2 HR estimates were equivalent to the criterion measure overall. The SWA is more accurate than the commercial-grade FC2. Neither device is consistently accurate across the range of activities used in this study. The HR data obtained from the FC2 is more accurate than its EE estimates and future research may focus more on this variable
A secondary analysis of the NoHoW trial
Funding Information: This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 643309. The material presented and views expressed here are the responsibility of the author(s) only. The EU Commission takes no responsibility for any use made of the information set out. Funding Information: The NoHoW Trial was funded by the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement number 643309). A detailed description of the NoHoW trial procedures can be found elsewhere ( Marques et al., 2021 ; Scott et al., 2019 ). The trial was registered with the ISRCTN registry (ISRCTN88405328). Ethical approval was granted by all local institutional ethics committees at the Universities of Lisbon (17/2016; 20-Feb-2017), Leeds (17–0082; 27-Feb-2017), and the Capital Region of Denmark (H-16030495; 8-Mar-2017). Participants were assigned to one of four intervention conditions that have access to different theory-based digitally delivered content: Publisher Copyright: © 2022 The AuthorsBackground: To date, few digital behavior change interventions for weight loss maintenance focusing on long-term physical activity promotion have used a sound intervention design grounded on a logic model underpinned by behavior change theories. The current study is a secondary analysis of the weight loss maintenance NoHoW trial and investigated putative mediators of device-measured long-term physical activity levels (six to 12 months) in the context of a digital intervention. Methods: A subsample of 766 participants (Age = 46.2 ± 11.4 years; 69.1% female; original NoHoW sample: 1627 participants) completed all questionnaires on motivational and self-regulatory variables and had all device-measured physical activity data available for zero, six and 12 months. We examined the direct and indirect effects of Virtual Care Climate on post intervention changes in moderate-to-vigorous physical activity and number of steps (six to 12 months) through changes in the theory-driven motivational and self-regulatory mechanisms of action during the intervention period (zero to six months), as conceptualized in the logic model. Results: Model 1 tested the mediation processes on Steps and presented a poor fit to the data. Model 2 tested mediation processes on moderate-to-vigorous physical activity and presented poor fit to the data. Simplified models were also tested considering the autonomous motivation and the controlled motivation variables independently. These changes yielded good results and both models presented very good fit to the data for both outcome variables. Percentage of explained variance was negligible for all models. No direct or indirect effects were found from Virtual Care Climate to long term change in outcomes. Indirect effects occurred only between the sequential paths of the theory-driven mediators. Conclusion: This was one of the first attempts to test a serial mediation model considering psychological mechanisms of change and device-measured physical activity in a 12-month longitudinal trial. The model explained a small proportion of variance in post intervention changes in physical activity. We found different pathways of influence on theory-driven motivational and self-regulatory mechanisms but limited evidence that these constructs impacted on actual behavior change. New approaches to test these relationships are needed. Challenges and several alternatives are discussed. Trial registration: ISRCTN Registry, ISRCTN88405328. Registered December 16, 2016, https://www.isrctn.com/ISRCTN88405328.publishersversionpublishe
The H2020 “NoHoW Project”: A Position Statement on Behavioural Approaches to Longer-Term Weight Management
There is substantial evidence documenting the effects of behavioural interventions on weight loss (WL). However, behavioural approaches to initial WL are followed by some degree of longer-term weight regain, and large trials focusing on evidence-based approaches to weight loss maintenance (WLM) have generally only demonstrated small beneficial effects. The current state-of-the-art in behavioural interventions for WL and WLM raises questions of (i) how we define the relationship between WL and WLM, (ii) how energy balance (EB) systems respond to WL and influence behaviours that primarily drive weight regain, (iii) how intervention content, mode of delivery and intensity should be targeted to keep weight off, (iv) which mechanisms of action in complex interventions may prevent weight regain and (v) how to design studies and interventions to maximise effective longer-term weight management. In considering these issues a writing team within the NoHoW Consortium was convened to elaborate a position statement, and behaviour change and obesity experts were invited to discuss these positions and to refine them. At present the evidence suggests that developing the skills to self-manage EB behaviours leads to more effective WLM. However, the effects of behaviour change interventions for WL and WLM are still relatively modest and our understanding of the factors that disrupt and undermine self-management of eating and physical activity is limited. These factors include physiological resistance to weight loss, gradual compensatory changes in eating and physical activity and reactive processes related to stress, emotions, rewards and desires that meet psychological needs. Better matching of evidence-based intervention content to quantitatively tracked EB behaviours and the specific needs of individuals may improve outcomes. Improving objective longitudinal tracking of energy intake and energy expenditure over time would provide a quantitative framework in which to understand the dynamics of behaviour change, mechanisms of action of behaviour change interventions and user engagement with intervention components to potentially improve weight management intervention design and evaluation