59 research outputs found

    Healthy reviews!- Online physician ratings reduce healthcare interruptions

    Get PDF
    We show that review platforms reduce healthcare interruptions for patients looking for a new physician. We employ a difference-in-differences strategy using physician retirements as a “disruptive shock” that forces patients to find a new physician. We combine insurance claims data with web-scraped physician reviews and highlight a substantial care-gap resulting from a physician’s retirement. We then show that online physician reviews reduce this gap and help patients find a new physician faster. Our results are robust to including a variety of controls and various instruments for the availability of physician reviews, but are not found for patients of nonretiring physicians. By reducing interruptions in care, reviews can improve clinical outcomes and lower costs

    Risk Factors for Seizures Among Young Children Monitored With Continuous Electroencephalography in Intensive Care Unit: A Retrospective Study

    Get PDF
    Objective: cEEG is an emerging technology for which there are no clear guidelines for patient selection or length of monitoring. The purpose of this study was to identify subgroups of pediatric patients with high incidence of seizures.Study Design: We conducted a retrospective study on 517 children monitored by cEEG in the intensive care unit (ICU) of a children's hospital. The children were stratified using an age threshold selection method. Using regression modeling, we analyzed significant risk factors for increased seizure risk in younger and older children. Using two alternative correction procedures, we also considered a relevant comparison group to mitigate selection bias and to provide a perspective for our findings.Results: We discovered an approximate risk threshold of 14 months: below this threshold, the seizure risk increases dramatically. The older children had an overall seizure rate of 18%, and previous seizures were the only significant risk factor. In contrast, the younger children had an overall seizure rate of 45%, and the seizures were significantly associated with hypoxic-ischemic encephalopathy (HIE; p = 0.007), intracranial hemorrhage (ICH; p = 0.005), and central nervous system (CNS) infection (p = 0.02). Children with HIE, ICH, or CNS infection accounted for 61% of all seizure patients diagnosed through cEEG under 14 months.Conclusions: An extremely high incidence of seizures prevails among critically ill children under 14 months, particularly those with HIE, ICH, or CNS infection

    Restoration of soil quality using biochar and brown coal waste: A review

    Get PDF
    Soils in intensively farmed areas of the world are prone to degradation. Amendment of such soils with organic waste materials attempts to restore soil quality. Organic amendments are heterogeneous media, which are a source of soil organic matter (SOM) and maintain or restore chemical, physical, biological and ecological functionality. More specifically, an increase in SOM can influence the soil microclimate, microbial community structure, biomass turnover and mineralisation of nutrients. The search is on-going for locally sourced alternatives as many forms may be costly or geographically limiting. The present review focuses on a heterogeneous group of amendments i.e. biochar and brown coal waste (BCW). Both biochar (made from a variety of feedstocks at various temperatures) and BCW (mined extensively) are options that have worldwide applicability. These materials have very high C contents and soil stability, therefore can be used for long-term C sequestration to abate greenhouse gas emissions and as conditioners to improve soil quality. However, biochar is costly for large-scale applications and BCW may have inherently high moisture and pollutant contents. Future studies should focus on the long-term application of these amendments and determine the physicochemical properties of the soil, bioavailability of soil contaminants, diversity of soil communities and productivity of selected crops. Furthermore, the development of in situ technologies to lower production and processing costs of biochar and BCW would improve their economic feasibility for large-scale application

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naĂŻve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Can big data cure risk selection in healthcare capitation program? A game theoretical analysis

    No full text

    Artificial Neural Networks in Mammography Interpretation and Diagnostic Decision Making

    Get PDF
    Screening mammography is the most effective means for early detection of breast cancer. Although general rules for discriminating malignant and benign lesions exist, radiologists are unable to perfectly detect and classify all lesions as malignant and benign, for many reasons which include, but are not limited to, overlap of features that distinguish malignancy, difficulty in estimating disease risk, and variability in recommended management. When predictive variables are numerous and interact, ad hoc decision making strategies based on experience and memory may lead to systematic errors and variability in practice. The integration of computer models to help radiologists increase the accuracy of mammography examinations in diagnostic decision making has gained increasing attention in the last two decades. In this study, we provide an overview of one of the most commonly used models, artificial neural networks (ANNs), in mammography interpretation and diagnostic decision making and discuss important features in mammography interpretation. We conclude by discussing several common limitations of existing research on ANN-based detection and diagnostic models and provide possible future research directions
    • …
    corecore