2,068 research outputs found

    Origin and thermal evolution of Mars

    Get PDF
    The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented

    The temperature dependence of the isothermal bulk modulus at 1 bar pressure

    Get PDF
    It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking

    Quantum spectrum as a time series : Fluctuation measures

    Full text link
    The fluctuations in the quantum spectrum could be treated like a time series. In this framework, we explore the statistical self-similarity in the quantum spectrum using the detrended fluctuation analysis (DFA) and random matrix theory (RMT). We calculate the Hausdorff measure for the spectra of atoms and Gaussian ensembles and study their self-affine properties. We show that DFA is equivalent to Δ3\Delta_3 statistics of RMT, unifying two different approaches.We exploit this connection to obtain theoretical estimates for the Hausdorff measure.Comment: 4+ pages. 2 figure

    Using the seismology of non-magnetic chemically peculiar stars as a probe of dynamical processes in stellar interiors

    Full text link
    Chemical composition is a good tracer of hydrodynamical processes that occur in stars as they often lead to mixing and particle transport. By comparing abundances predicted by models and those observed in stars we can infer some constraints on those mixing processes. As pulsations in stars are often very sensitive to chemical composition, we can use asteroseismology to probe the internal chemical composition of stars where no direct observations are possible. In this paper I focus on main sequence stars Am, lambda bootis, and HgMn stars and discuss what we can learn of mixing processes in those stars from seismology.Comment: 10 pages,6 figures. accepted in Journal of astrophysics and astronomy. proceedings of aries conferemce on asteroseismology. december 200

    Relation Between First Arrival Time and Permeability in Self-Affine Fractures with Areas in Contact

    Full text link
    We demonstrate that the first arrival time in dispersive processes in self-affine fractures are governed by the same length scale characterizing the fractures as that which controls their permeability. In one-dimensional channel flow this length scale is the aperture of the bottle neck, i.e., the region having the smallest aperture. In two dimensions, the concept of a bottle neck is generalized to that of a minimal path normal to the flow. The length scale is then the average aperture along this path. There is a linear relationship between the first arrival time and this length scale, even when there is strong overlap between the fracture surfaces creating areas with zero permeability. We express the first arrival time directly in terms of the permeability.Comment: EPL (2012)

    3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central U.S.

    Get PDF
    Acknowledgments We are indebted to F. Darbyshire and J. von Hunen for useful comments on earlier versions of this work. This manuscript benefited from thorough and constructive reviews by W. Levandowski and an anonymous reviewer. We also thank J. Connolly, M. Sambridge, B. Kennett, S. Lebedev, B. Shan, U. Faul, and M. Qashqai for insightful discussions about, and contributions to, some of the concepts presented in this paper. The work of J.C.A. has been supported by two Australian Research Council Discovery grants (DP120102372 and DP110104145). Seismic data are from the IRIS DMS. D.L.S. acknowledges support from NSF grant EAR-135866. This is contribution 848 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 1106 in the GEMOC Key Centre (http://www.gemoc.mq.edu.au).Peer reviewedPublisher PD

    A model for the distribution of aftershock waiting times

    Full text link
    In this work the distribution of inter-occurrence times between earthquakes in aftershock sequences is analyzed and a model based on a non-homogeneous Poisson (NHP) process is proposed to quantify the observed scaling. In this model the generalized Omori's law for the decay of aftershocks is used as a time-dependent rate in the NHP process. The analytically derived distribution of inter-occurrence times is applied to several major aftershock sequences in California to confirm the validity of the proposed hypothesis.Comment: 4 pages, 3 figure

    Kinetic description of hadron-hadron collisions

    Full text link
    A transport model based on the mean free path approach to describe pp collisions is proposed. We assume that hadrons can be treated as bags of partons similarly to the MIT bag model. When the energy density in the collision is higher than a critical value, the bags break and partons are liberated. The partons expand and can make coalescence to form new hadrons. The results obtained compare very well with available data and some prediction for higher energies collisions are discussed. Based on the model we suggest that a QGP could already be formed in the pp collisions at high energies

    MR447: Seasonal Water Table and Temperature Relationships in Calcareous Till and Residual Soils of Central Maine

    Get PDF
    Water table depths and soil temperatures were monitored for four growing seasons in six calcareous till pedons developed on gently rolling to level till plains in Corinth and Exeter, Maine. These soils are part of a new catena that supports potato production in southeastern Penobscot County. Three of these coarse-loamy to fine-loamy pedons are moderately well drained Oxyaquic Eutrudepts taxadjuncts in potato fields, and three are somewhat poorly drained Aquic Dystric Eutrudepts in predominantly deciduous forest. Soil morphology, hydrologic data, and a,a dipyridyl applications support the described subgroup classification of each pedon, along with the udic moisture regime. Despite a smooth, glaciated landscape that would suggest the presence of extensive lodgment till, five observation sites lacked a densic contact and one contained residuum (saprolite) in the substratum. Apparent water tables in the SPD very deep soils, as well as oxyaquic hydrology in the deep soils on 0 to 3 percent slopes, suggest the more permeable subglacial melt-out till predominating, rather than lodgment till in all of these pedons. Growing season concepts were compared based on frost-free season at 0 and -2.2° C thresholds, soil temperatures in the plow layer, soil temperature at 50 cms and well-water temperature. The commencement of the growing season in the spring did not differ much across all five concepts. However, in the fall there was a 4- to 8-week lag between the air or shallower soil-temperature growing-season concepts and the deeper soil or well-water-temperature growing-season concepts. Daytime air temperature during the first 2 years of monitoring differed significantly between spring and fall seasons, but not between field and forest sites within each season.https://digitalcommons.library.umaine.edu/aes_miscreports/1027/thumbnail.jp

    A search for solar-like oscillations in the Am star HD 209625

    Full text link
    The goal is to test the structure of hot metallic stars, and in particular the structure of a near-surface convection zone using asteroseismic measurements. Indeed, stellar models including a detailed treatement of the radiative diffusion predict the existence of a near-surface convection zone in order to correctly reproduce the anomalies in surface abundances that are observed in Am stars. The Am star HD 209625 was observed with the Harps spectrograph mounted on the 3.6-m telescope at the ESO La Silla Observatory (Chile) during 9 nights in August 2005. This observing run allowed us to collect 1243 radial velocity (RV) measurements, with a standard deviation of 1.35 m/s. The power spectrum associated with these RV measurements does not present any excess. Therefore, either the structure of the external layers of this star does not allow excitation of solar-like oscillations, or the amplitudes of the oscillations remain below 20-30 cm/s (depending on their frequency range).Comment: 5 pages, 4 figures, A&A accepte
    corecore