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It is well established that the product of the volume coefficient of thermal expansion and the bulk
modulus is nearly constant at temperatures higher than the Debye temperature. Using this
approximation allows predicting the values of the bulk modulus. The derived analytical solution for
the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The
good correlations to the experiments indicate that the expression may be useful for substances for
which bulk modulus data are lacking. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2424535�

I. INTRODUCTION

Any isothermal equation of state1–7 �EOS� requires
knowing the value of the bulk modulus at the temperature of
interest. Theoretically the temperature dependence of the
elastic constants can be determined as the sum of the anhar-
monic terms.8,9 At sufficiently low temperatures the elastic
constant should vary as10 T4. Contrary to this suggestion
some metallic substances have been found to show a T2

rather than a T4 dependence at low temperatures.11,12 There is
no general prediction for higher temperatures. Experiments
on refractory oxides, conducted at higher than room tempera-
ture, show a linear relationship between the bulk modulus
and the temperature.13

The third law of thermodynamics requires that the de-
rivative of any elastic constant with respect to the tempera-
ture must approach zero as the temperature approaches ab-
solute zero. Combining this criterion with the observed linear
relationship at higher temperatures, Wachtman et al.14 sug-
gested an equation in the form of

B = B0 − b1Te�−T0/T�, �1�

where B0 is the bulk modulus at absolute zero, T is the tem-
perature, and b1 and T0 are arbitrary constants. Theoretical
justification for the equation of Wachtman et al. was sug-
gested by Anderson.15

Based on shock-wave and static-compression measure-
ments on metals, a linear relationship between the logarithm
of the bulk modulus and the specific volume has been de-
tected for metals,16

ln BT = ln B0 + ���V

V
� , �2�

where � is a constant depending on the material. The linear
correlation is valid up to 40% volume change. Using this

linear correlation, Jacobs and Oonk17 proposed an equation
of state. They rewrite Eq. �2� as

Vm
0 �T� = Vm

0 �T0� + b ln� B0�T�
B0�T0�

� , �3�

where Vm
0 denotes molar volume, T0 the reference tempera-

ture, and the superscript “0” refers to standard pressure
�1 bar�. Equation �3� successfully reproduces the available
experimental data17–19 for MgO, Mg2SiO4, and Fe2SiO4.

In this study, analytical solution for the temperature de-
pendence of the bulk modulus and the pressure dependence
of the volume coefficient of thermal expansion has been de-
rived from fundamental thermodynamic equations. The de-
rived theoretical expression for the temperature dependence
of the isothermal bulk modulus is compared to experiments.

II. THEORY

The isothermal bulk modulus �BT� is defined as

BT � − V� �p

�V
�

T
. �4�

It is assumed that the solid is homogeneous, isotropic, non-
viscous, and has linear elasticity. It is also assumed that the
stresses are isotropic; therefore, the principal stresses can be
identified as the pressure20 p=�1=�2=�3.

The definition for the volume coefficient of thermal ex-
pansion ��Vp

� is given as

�Vp
�

1

V
� �V

�T
�

p
. �5�

Both the volume coefficient of expansion and the iso-
thermal bulk modulus are pressure and temperature depen-
dent; therefore, the universal description of solids requires
knowing the derivatives of these parameters.a�Electronic mail: jozsef.garai@fiu.edu
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� ��V

�T
�

p
, � ��V

�p
�

T
, � �BT

�T
�

p
, � �BT

�p
�

T
. �6�

The complete thermophysical description of an elastic solid
requires knowing the two parameters �Eqs. �4� and �5�� and
their four derivatives �Eq. �6��.

The pressure derivative of the volume coefficient of ther-
mal expansion and the temperature derivative of the isother-
mal bulk modulus are not independent from each other and
the relationship between these derivatives is given,5

� ��Vp

�p
�

T
=

1

BT
2� �BT

�T
�

p
. �7�

It is worth to note that Eq. �7� reduces the number of inde-
pendent partial derivatives of the fundamental parameters
�Vp

and BT to three.
The definition of the isothermal Anderson-Grüneisen pa-

rameter ��T� is

�T = −
1

�Vp
BT
� �BT

�T
�

p
= −

1

�Vp

� � ln BT

�T
�

p
. �8�

Equation �8� can be written as

BT = BT=0e−�T=0
T �V�p,T���p,T�dT. �9�

At 1 bar pressure Eq. �9� reduces to

BT
0 = BT=0

0 e�T=0
T �V

0 �T��0�T�dT, �10�

where superscript 0 refers to 1 bar pressure. Inserting Eq. �7�
into Eq. �8� gives

�T = −
1

�VBT
	BT

2� ��V

�p
�

T



= −
BT

�V
� ��V

�p
�

T
= − BT� � ln �V

�p
� . �11�

Equation �11� can also be written as

�Vp
= �Vp0e

−�
p0
p

��p,T�/B�p,T�dp, �12�

where p0 denotes 1 bar pressure. An alternative derivation of
Eqs. �10� and �12� is given in the Appendix.

Relations �10� and �12� are generally valid. The diffi-
culty is that the Anderson-Grüneisen parameter in these
equations is not constant but rather changes with tempera-
ture, especially at low temperatures. Inspecting Eq. �8� re-
veals that it is composed of the thermal pressure derivative
with respect to temperature,

� �pth

�T
�

V
= �Vp

BT, �13�

and the temperature derivative of the isothermal bulk modu-
lus.

For substances which the quasiharmonic approximation
�QHA� model is applicable, the product of the volume coef-
ficient of thermal expansion and isothermal bulk modulus is
nearly constant above the Debye temperature.21 The constant
value for the product of the volume coefficient of thermal
expansion and the isothermal bulk modulus at temperatures

higher than the Debye temperature is also consistent with
experiments.22–25 Inspecting Fig. 1 shows that the tempera-
ture derivative of the isothermal bulk modulus is nearly con-
stant at temperatures above the Debye temperature. There-
fore it is reasonable to assume that the Anderson-Grüneisen
parameter is approximately constant at temperatures above
the Debye temperature.

Assuming that �Vp
BT is constant at temperatures higher

than the Debye temperature then three parameters, the vol-
ume coefficient of thermal expansion, the bulk modulus, and
the Anderson-Grüneisen parameter, can completely describe
the relationship between the pressure, volume, and tempera-
ture. In this study the validity of Eq. �10� will be investigated
by comparing the theoretically derived expression to experi-
ments.

III. RESULTS AND DISCUSSION

Experiments with ten or more data points were chosen
from the literature in order to evaluate the theoretically de-
rived temperature dependence of the bulk modulus. Experi-
ments of Ag, Au, MgO, Al2O3, MgAl2O4, Mg2SiO4,
�Fe0.1Mg0.9�2SiO4, CaO, NaCl, and KCl were used for the
investigation.

The integration of �T=0
T �Vp

dT was done numerically by
using linear polynomials. The volume coefficient of thermal
expansion values at various temperatures were taken from

FIG. 1. The solid lines are the calculated bulk modulus using Eq. �10�, while
the dots represent the experimental values. B0 is the bulk modulus at zero
temperature, � is the calculated average Anderson-Grüneisen parameter, and
R is the correlation coefficient.
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Ref. 26 for Ag and Au, and from Ref. 21 for the rest of the
substances. The polynomial fit of seven experiments given
by Jacobs and Oonk,27

�Vp
�p0,T� = 4.5248 � 10−5 + 8.4711 � 10−10T

− 4.1959 � 10−3T−1 + 2.4984 � 10−12T2,

�14�

was also used to determine the values of the volume coeffi-
cient of thermal expansion for MgO. If experiments are not
available then the linear correlation between the heat capac-
ity and the volume coefficient of thermal expansion can be
used calculating the value of the volume coefficient of ther-
mal expansion at the temperature of interest.28 Using least-
squares fit the Anderson-Grüneisen parameter and the corre-
lation coefficients were determined. The calculated
Anderson-Grüneisen parameters are in very good agreement
with experiments. The correlation coefficients are the lowest
for the two noble metals, i.e., 0.9972 and 0.9987, while for
the rest of the minerals the values are between 0.9992 and
1.0. At low temperatures the Anderson-Grüneisen parameter
changes significantly as a function of temperature,29 and the
constant value approach for the Anderson-Grüneisen param-
eter might not be appropriate. The data of the noble metals
contain the very low temperature experiments, which can
explain the slightly weaker correlation.

The best fits for the two different data sets of MgO re-
sulted almost identical values for the isothermal bulk modu-
lus at zero temperature and the Anderson-Grüneisen param-
eters. The results are given in Table I. The calculated values
were plotted against experiments �Fig. 1�. It can be seen that
the derived theoretical relationship for the temperature de-
pendence of the bulk modulus can reproduce the experimen-
tal values with high accuracy for the entire temperature range
of the solid phase.

IV. CONCLUSIONS

Traditionally the bulk modulus has to be measured at the
temperature of interest requiring numerous experiments. As-
suming constant value for the product of the isothermal bulk
modulus and the volume coefficient of thermal expansion
allows describing the volume-pressure-temperature relation-
ship of a solid from three parameters, namely, from the zero
temperature values of the volume coefficient of thermal ex-
pansion, and isothermal bulk modulus, and from Anderson-
Grüneisen parameter. The derived theoretical expression �Eq.
�10�� can be employed to extrapolate data measured at con-
venient temperatures to the temperature of interest.

Our investigation showed that assuming constant value
for the Anderson-Grüneisen parameter at temperatures higher
than the Debye temperature is reasonable.

APPENDIX

The temperature dependence of the bulk modulus and
the pressure dependence of the volume coefficient of thermal
expansion can also be derived from fundamental thermody-
namic relationships, which do not include the definition of
the Anderson-Grüneisen parameter. Using the Euler’s chain
relation,

− 1 = � �p

�V
�

T
� �V

�T
�

p
� �T

�p
�

V
= −

BT

V
V�Vp

� �T

�p
�

V
�A1�

gives the pressure and temperature relationship at constant
volume as

BT�Vp
= � �p

�T
�

V
. �A2�

Combining Eqs. �7� and �A2� gives

TABLE I. B0 is the bulk modulus at zero temperature, �av
calc is the calculated average of Anderson-Grüneisen

parameter in the temperature range of interest, �T is the Anderson-Grüneisen parameter, R is the correlation
coefficient, and N is the number of experiments. The data for Ag and Au are from Refs. 29–33 while the rest of
the data is from Ref. 21. The volume coefficient of thermal expansion values for MgO�2� are from Ref. 27. The
errors represent the standard deviation.

Material
B0

�GPa� �av
calc �T R N

Ag 165.2�9�a 5.22�86� 5.66,b 6.18c 0.997 2 14
Au 230.8�6�a 5.17�56� 5.21–6.39d 0.998 7 14
MgO 165.4�6� 4.91�8� 4.66–5.26 0.999 8 18
MgO�2� 165.3�5� 4.93�8� 4.66–5.26 0.999 8 18
Al2O3 255.6�8� 5.21�12� 4.50–5.71 0.999 7 16
MgAl2O4 212.0�7� 6.75�27� 6.24–7.73 0.999 3 15
Mg2SiO4 130.1�2� 5.46�4� 5.42–5.94 0.999 97 15
�Fe0.1Mg0.9�2SiO4 133.8�9� 5.44�25� 5.43–6.59 0.999 2 13
CaO 116.0�3� 5.06�9� 5.01–6.19 0.999 9 10
NaCl 26.8�2� 5.96�16� 5.56–6.53 0.999 7 10
KCl 18.8�2� 5.92�21� 5.84–6.19 0.999 6 12

aReference 30.
bReference 31.
cReference 32.
dReferences 29 and 33.
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� ��Vp

�p
�

T
=

�Vp

BT
� �T

�p
�

V
� �BT

�T
�

p
. �A3�

Introducing a parameter a, which is defined as

a =
1

�Vp

2 � ��Vp

�p
�

T
� �p

�T
�

V
= − 	 �

�p� 1

�Vp

�

T

� �p

�T
�

V
, �A4�

and substituting this parameter into Eq. �A3� gives

d ln BT = a�Vp
dT . �A5�

The integral of Eq. �A5� gives the temperature dependence of
the bulk modulus as

BT = BT=0e�T=0
T a�Vp

dT. �A6�

The pressure dependence of the volume coefficient of ther-
mal expansion can also be determined from Eq. �A3�. Rear-
ranging Eq. �A3� gives

d ln �Vp
= � �T

�p
�

V
� �BT

�T
�

p

�p

BT
. �A7�

Defining a dimensionless parameter b as

b = � �T

�p
�

V
� �BT

�T
�

p
, �A8�

and integrating Eq. �A7� leads to

�Vp
= �Vp=0

e�p=0
p b/BTdp. �A9�

Equation �A9� describes the pressure dependence of the vol-
ume coefficient of thermal expansion.

Introducing the symbol pth� for the partial derivative of
the thermal pressure with respect to the temperature,

pth� = � �p

�T
�

V
= �Vp

BT ⇔
1

BT
=

�Vp

pth�
, �A10�

the parameters a and b can be defined as

a =
pth�

�Vp

2 � ��V

�p
�

T
and b =

1

pth�
� �BT

�T
�

p
= − �T, �A11�

where �T is the isothermal Anderson-Grüneisen parameter
given by

�T = −
1

�Vp
BT
� �BT

�T
�

p
= −

1

�p
� � ln BT

�T
�

p
. �A12�

Using the definition of the coefficient a �Eq. �A11��, and
combining with Eq. �7�, and the expression of the tempera-
ture derivative of the thermal pressure, Eq. �A10� implies
that the two parameters a and b are equal with each other.

a =
�Vp

BT

�Vp

2

1

BT
2� �BT

�T
�

p
=

1

pth�
� �BT

�T
�

p
= b = − �T, �A13�

where b was substituted by using Eq. �A11�. The identity
�a=b� holds true regards of the temperature. The temperature

dependence of the bulk modulus then can be written as

BT = BT=0e−�T=0
T �T�Vp

dT, �A14�

while the pressure dependence of the volume coefficient of
thermal expansion

�Vp
= �Vp=0

e−�p=0
p �T/BTdp. �A15�

Equations �A14� and �A15� recover Eqs. �10� and �12�,
respectively.
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