7,342 research outputs found
Navier-Stokes calculations for the vortex of a rotor in hover
An efficient finite-difference scheme for the solution of the incompressible Navier-Stokes equation is used to study the vortex wake of a rotor in hover. The solution Procedure uses a vorticity-stream function formulation and incorporates an asymptotic far-field boundary condition enabling the size of the computational domain to be reduced in comparison to other methods. The results from the present method are compared with experimental data obtained by smoke flow visualization and hot-wire measurements for several rotor blade configurations
Quasi-Local Energy Flux of Spacetime Perturbation
A general expression for quasi-local energy flux for spacetime perturbation
is derived from covariant Hamiltonian formulation using functional
differentiability and symplectic structure invariance, which is independent of
the choice of the canonical variables and the possible boundary terms one
initially puts into the Lagrangian in the diffeomorphism invariant theories.
The energy flux expression depends on a displacement vector field and the
2-surface under consideration. We apply and test the expression in Vaidya
spacetime. At null infinity the expression leads to the Bondi type energy flux
obtained by Lindquist, Schwartz and Misner. On dynamical horizons with a
particular choice of the displacement vector, it gives the area balance law
obtained by Ashtekar and Krishnan.Comment: 8 pages, added appendix, version to appear in Phys. Rev.
Magnetic anisotropy and spin-spiral wave in V, Cr and Mn atomic chains on Cu(001) surface: First principles calculations
Recent ab intio studies of the magnetic properties of all 3d transition
metal(TM) freestanding atomic chains predicted that these nanowires could have
a giant magnetic anisotropy energy (MAE) and might support a spin-spiral
structure, thereby suggesting that these nanowires would have technological
applicationsin, e.g., high density magnetic data storages. In order to
investigate how the substrates may affect the magnetic properties of the
nanowires, here we systematically study the V, Cr and Mn linear atomic chains
on the Cu(001) surface based on the density functional theory with the
generalized gradient approximation. We find that V, Cr, and Mn linear chains on
the Cu(001) surface still have a stable or metastable ferromagnetic state.
However, the ferromagnetic state is unstable against formation of a
noncollinear spin-spiral structure in the Mn linear chains and also the V
linear chain on the atop sites on the Cu(001) surface, due to the frustrated
magnetic interactions in these systems. Nonetheless, the presence of the
Cu(001) substrate does destabilize the spin-spiral state already present in the
freestanding V linear chain and stabilizes the ferromagnetic state in the V
linear chain on the hollow sites on Cu(001). When spin-orbit coupling (SOC) is
included, the spin magnetic moments remain almost unchanged, due to the
weakness of SOC in 3d TM chains. Furthermore, both the orbital magnetic moments
and MAEs for the V, Cr and Mn are small, in comparison with both the
corresponding freestanding nanowires and also the Fe, Co and Ni linear chains
on the Cu (001) surface.Comment: Accepted for publication in J. Phys. D: Applied Physic
Impact of the various spin and orbital ordering processes on multiferroic properties of orthovanadate DyVO3
The orthovanadate DyVO3 crystal, known to exhibit multiple structural, spin
and orbital ordering transitions, is presently investigated on the basis of
magnetization, heat capacity, resistivity, dielectric and polarization
measurements. Our main result is experimental evidence for the existence of
multiferroicity below a high TC of 108 K over a wide temperature range
including different spin-orbital ordered states. The onset of ferroelectricity
is found to coincide with the antiferromagnetic C-type spin ordering transition
taking place at 108 K, which indicates that DyVO3 belongs to type II
multiferroics exhibiting a coupling between magnetism and ferroelectricity.
Some anomalies detected on the temperature dependence of electric polarization
are discussed with respect to the nature of the spin-orbital ordered states of
the V sublattice and the degree of spin alignment in the Dy sublattice. The
orthovanadates RVO3 (R = rare earth or Y) form an important new category for
searching for high-TC multiferroics.Comment: 25 pages, 7 figures, 68 references, one supplementary material,
Physical Review B, Published 23 July 201
The structure of trailing vortices generated by model rotor blades
Hot-wire anemometry to analyze the structure and geometry of rotary wing trailing vortices is studied. Tests cover a range of aspect ratios and blade twist. For all configurations, measured vortex strength correlates well with maximum blade-bound circulation. Measurements of wake geometry are in agreement with classical data for high-aspect ratios. The detailed vortex structure is similar to that found for fixed wings and consists of four well defined regions--a viscous core, a turbulent mixing region, a merging region, and an inviscid outer region. A single set of empirical formulas for the entire set of test data is described
Resonant Subband Landau Level Coupling in Symmetric Quantum Well
Subband structure and depolarization shifts in an ultra-high mobility
GaAs/Al_{0.24}Ga_{0.76}As quantum well are studied using magneto-infrared
spectroscopy via resonant subband Landau level coupling. Resonant couplings
between the 1st and up to the 4th subbands are identified by well-separated
anti-level-crossing split resonance, while the hy-lying subbands were
identified by the cyclotron resonance linewidth broadening in the literature.
In addition, a forbidden intersubband transition (1st to 3rd) has been
observed. With the precise determination of the subband structure, we find that
the depolarization shift can be well described by the semiclassical slab plasma
model, and the possible origins for the forbidden transition are discussed.Comment: 4 pages, 2 figure
Characteristics of Laboratory Confirmed Ethylene Glycol and Methanol Exposures Reported to a Regional Poison Control Center
Introduction. Ethylene glycol (EG) and methanol (MET) exposuresare rare but can cause significant morbidity and mortality.Though frequently treated similarly, EG and MET exposures havecharacteristics that are not well differentiated in the literature. Wesought to describe the clinical characteristics of EG and MET exposures,confirmed with quantitative serum levels.
Methods. An IRB-approved retrospective review of the Universityof Kansas Health System Poison Control Center database from July2005 to July 2015 identified all EG/MET exposures evaluated ata health care facility. Initial measurements were EG/MET levels,serum pH, serum creatinine, anion gap, serum ethanol level, maxanion gap, max osmolar gap, therapy performed (hemodialysis,fomepizole, ethanol) and death.
Results. The search identified 75 cases, with 59 cases having onlydetectable EG levels and 15 cases having only detectable MET levels.The average EG level was 126 mg/dL (range 5 - 834). The averagedetectable methanol level was 78 mg/dL (range 5 - 396). The averagemaximum anion gap of the EG positive group was 20 mEq/L (range8 - 35). The average maximum anion gap of the MET positive groupwas 14 mEq/L (range 6 - 34). One death was reported in the EG positivegroup, with an initial level of 266 mg/dL.
Conclusions. In this study of EG/MET exposures, EG exposureswere more common than MET exposures, but they had similardemographics, laboratory findings, and interventions. Continuedstudies are warranted to characterize these uncommon exposuresfurther. Kans J Med 2018;11(3):67-69
The Final Fate of Binary Neutron Stars: What Happens After the Merger?
The merger of two neutron stars usually produces a remnant with a mass
significantly above the single (nonrotating) neutron star maximum mass. In some
cases, the remnant will be stabilized against collapse by rapid, differential
rotation. MHD-driven angular momentum transport eventually leads to the
collapse of the remnant's core, resulting in a black hole surrounded by a
massive accretion torus. Here we present simulations of this process. The
plausibility of generating short duration gamma ray bursts through this
scenario is discussed.Comment: 3 pages. To appear in the Proceedings of the Eleventh Marcel
Grossmann Meeting, Berlin, Germany, 23-29 July 2006, World Scientific,
Singapore (2007
- …