78 research outputs found

    Valuing life detection missions

    Full text link
    Recent discoveries imply that Early Mars was habitable for life-as-we-know-it; that Enceladus might be habitable; and that many stars have Earth-sized exoplanets whose insolation favors surface liquid water. These exciting discoveries make it more likely that spacecraft now under construction - Mars 2020, ExoMars rover, JWST, Europa Clipper - will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources (\$10bn/decade for the US ), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework for comparing the value of different life detection missions: Scientific value = (Reach x grasp x certainty x payoff) / \$ After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable.Comment: Accepted by "Astrobiology.

    The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 69 (2005): 893-903, doi:10.1016/j.gca.2004.07.032.The production rate and isotopic composition of H2 derived from radiolytic reactions in H2O were measured to assess the importance of radiolytic H2 in subsurface environments and to determine whether its isotopic signature can be used as a diagnostic tool. Saline and pure, aerobic and anaerobic water samples with pH values of 4, 7 and 10 were irradiated in sealed vials at room temperature with an artificial γ source, and the H2 abundance in the headspace and its isotopic composition were measured. The H2 concentrations were observed to increase linearly with dosage at a rate of 0.40 ± 0.04 molecules (100 eV)-1 within the dosage range of 900 to 3500 Gray (Gy; Gy =1 J Kg-1) with no indication of a maximum limit on H2 concentration. At ~2000 Gy, the H2 concentration varied only by 16% across the experimental range of pH, salinity and O2. Based upon this measured yield and H2 yields for α and β particles a radiolytic H2 production rate of 10-9 to 10-4 nM sec-1 was estimated for the range of radioactive element concentrations and porosities typical of crustal rocks. The δD of H2 (δD = ((D/H)sample/(D/H)standard –1) × 1000) was independent of the dosage, pH (except for pH 4), salinity, and O2 and yielded an αDH2O-H2 of 2.05 ± 0.07 (αDH2O-H2 = (D/H)H2O to (D/H)H2), slightly less than predicted radiolytic models. Although this radiolytic fractionation value is significantly heavier than that of equilibrium isotopic exchange between H2 and H2O, the isotopic exchange rate between H2 and H2O will erase the heavy δD of radiolytic H2 if the age of the groundwater is greater than ~103 to 104 years. The millimolar concentrations of H2 observed in the groundwater of several Precambrian Shields are consistent with radiolysis of water that has resided in the subsurface for a few million years. These concentrations are well above those required to support H2-utilizing microorganisms and to inhibit H2-producing, fermentative microorganisms.This work is supported by grant from NSF LExEn program (EAR-9978267) to T.C. Onstott

    Survivability of Psychrobacter cryohalolentis K5 Under Simulated Martian Surface Conditions

    Get PDF
    Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25 degrees C for 24 hr within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 hr of exposure to Mars-normal conditions of 4.55 W/m(2) UVC irradiation (200-280 nm), -12.5 degrees C, 7.1 mbar, and a Mars gas mix composed of CO2 (95.3%), N2 (2.7%), Ar (1.6%), O2 (0.2%), and H(2)O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at tau = 0.1 (dust-free CO2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 hr exposure period

    The Role of Physical, Chemical, and Microbial Heterogeneity on the Field-Scale Transport and Attachment of Bacteria

    Get PDF
    A field-scale bacterial transport experiment was conducted at the Narrow Channel Focus Area of the South Oyster field site located in Oyster, Virginia. The goal of the field experiment was to determine the relative influence of subsurface heterogeneity and microbial population parameters on flow direction, velocity, and attachment of bacteria at the field scale. The field results were compared with results from laboratory-scale column experiments to develop a method for predicting field-scale bacterial transport. The field site is a shallow, sandy, unconfined, aerobic aquifer that has been characterized by geophysical, sedimentological, and hydrogeological methods. Comamonas sp. strain DA001 and a conservative tracer, bromide (Br), were injected into an area of high permeability for 12 hours. The Br and bacterial concentrations in the groundwater were monitored for 1 week at 192 sampling ports spaced over a 2-m vertical zone located from 0.5 to 7 m down-gradient of the injection well. The bacterial and Br plume was observed to move past 95 sampling ports. The densely characterized field site enabled the comparison of variations in DA001 transport to the aquifer properties. The velocity of the injected plume was correlated with geophysical estimates of hydraulic conductivity. The bacterial and Br plume appeared to follow flow paths not coincident with the hydraulic gradient but through a zone of higher permeability located off the flow axis. The amount of breakthrough of the bacteria was similar in both the high and low permeability layers with only a weak correlation between the observed hydraulic conductivity and amount of bacterial breakthrough. The uniformity in the observed attachment rates across varying grain sizes could be explained by heterogeneity of microbial properties within the single strain of injected bacteria. Application of colloid filtration theory to the field data indicated that variations in the microbial population were described by a lognormal distribution of the collision efficiency (a). Core-scale studies were used to predict the a distribution and field-scale transport distances of DA001. In sandy aquifers, physical heterogeneity may play a secondary role in controlling field-scale bacterial transport, and future research should focus on the microbial factors affecting transport

    New ecosystems in the deep subsurface follow the flow of water driven by geological activity

    Get PDF
    Eukarya have been discovered in the deep subsurface at several locations in South Africa, but how organisms reach the subsurface remains unknown. We studied river-subsurface fissure water systems and identified Eukarya from a river that are genetically identical for 18S rDNA. To further confirm that these are identical species one metazoan species recovered from the overlying river interbred successfully with specimen recovered from an underlying mine at −1.4 km. In situ seismic simulation experiments were carried out and show seismic activity to be a major force increasing the hydraulic conductivity in faults allowing organisms to create ecosystems in the deep subsurface. As seismic activity is a non-selective force we recovered specimen of algae and Insecta that defy any obvious other explanation at a depth of −3.4 km. Our results show there is a steady flow of surface organisms to the deep subsurface where some survive and adapt and others perish. As seismic activity is also present on other planets and moons in our solar system the mechanism elucidated here may be relevant for future search and selection of landing sites in planetary exploration.publishedVersio
    corecore