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1 ABSTRACT 

2	 Spacecraft launched to Mars can retain viable terrestrial microorganisms 

3	 onboard that may survive the interplanetary transit. Such biota might compromise 

4	 the search for life beyond Earth if capable of propagating on Mars. The current 

5	 study explored the survivability of Psychrobacter cryohalolentis K5, a 

6	 psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, 

7	 under simulated martian surface conditions of high ultraviolet (UV) irradiation, 

8	 high desiccation, low temperature and low atmospheric pressure. First, a 

9	 desiccation experiment compared the survival of P. cryohalolentis cells 

10	 embedded, or not embedded, within a medium/salt matrix maintained at 25 °C for 

11	 24 hrs within a laminar flow hood. Results indicated that the presence of the 

12	 medium/salt matrix enhanced survival of the bacterial cells by 1 to 3 orders of 

13	 magnitude. Second, tests were conducted in a Mars Simulation Chamber to 

14	 determine the UV tolerance of the microorganism. No viable vegetative cells of 

15	 P. cryohalolentis were detected after 8 hrs of exposure to Mars-normal conditions 

16	 of 4.55 W/m2 UVC irradiation (200-280 nm), —12.5 °C, 7.1 mbars and a Mars gas 

17	 mix composed of CO 2 (95.3%), N2 (2.7%), Ar (1.6%), 02 (0.2%) and H20 

18	 (0.03%). Third, an experiment was conducted within the Mars chamber in which 

19	 total atmospheric opacities were simulated at T = 0.1 (dust free CO2 atmosphere at 

20	 7.1 mbars), 0.5 (normal clear-sky with 0.4 = dust opacity and 0.1 = CO 2 only 

21	 opacity) and 3.5 (global dust storm) to determine the survivability of P. 

22	 cryohalolentis to partially shielded UVC radiation. The survivability of the 

23	 bacterium increased with the level of UVC attenuation, although population levels 
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still declined several orders of magnitude compared to UVC absent controls over 

2	 an 8-hr exposure period. 

3
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1 INTRODUCTION 

2	 Spacecraft that leave Earth inadvertently carry microscopic life forms 

3	 onboard embedded within surface defects, wiring, electronic boards, and metal 

4	 crevices (Schuerger, 2004). These microorganisms can endure the space 

5	 environment, including conditions of high vacuum, extreme temperature 

6	 fluctuations, high doses of solar UV irradiation, and other conditions hostile to 

7	 living cells (Horneck et cii. 2002; National Research Council 2005). Microbial 

8	 contamination of spacecraft may pose a serious concern for space missions with 

9	 life-detection payloads. A primary concern for near-term Mars surface missions 

10	 is how to eliminate the risks of false-positives derived from the launched 

11	 terrestrial bioloads (Rummel and Meyer, 1996; Schuerger, 2004).	 Thus, 

12	 measurements of the survivability of bacteria under simulated martian surface 

13	 conditions are essential to understanding which kinds of terrestrial 

14	 microorganisms - if any - can potentially propagate on the surface of Mars 

15	 (National Research Council 2005). 

16	 Recent studies have documented a high diversity of microorganisms in 

17	 NASA spacecraft assembly facilities, which could readily attach to spacecraft (La 

18	 Duc et al., 2003; 2004; 2007; Link et at., 2004; Moissl et at., 2007; 

19	 Venkateswaran et at., 2001; 2003). Crawford (2005), Nicholson et at. (2005), and 

20	 Tauscher et al. (2006) have hypothesized that maintaining a hygienic environment 

21	 inadvertently selects for oligotrophic microbes. For example, spores of Bacillus 
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1	 sp. and Clostridium sp. isolated from spacecraft clean rooms have indeed shown 

	

2	 unusual resistance to UV irradiation (Link et al., 2004; Newcombe et al., 2005). 

	

3	 These microorganisms and possibly others may be conditioned and pre-adapted to 

	

4	 the harsh conditions of spaceflight (La Duc et al., 2004). Survival of terrestrial 

	

5	 microbes in interplanetary space requires resistance to extreme low pressures, 

	

6	 extreme temperatures, (ranging from -171 °C to +111 °C), severe desiccation, 

	

7	 solar UV irradiation, solar particle/radiation events, and cosmic rays (Schuerger, 

	

8	 2004). Despite these conditions, it has been estimated that a typical Mars 

	

9	 spacecraft might retain 3x104 - 2x107 viable bacteria, located deep inside the 

	

10	 vehicle, by the time it reaches the surface of the planet (Schuerger, 2004). 

	

11	 Schuerger et al. (2003; 2006) showed that after reaching the surface, 

	

12	 99.9% of Bacillus subtilis spores exposed to simulated martian conditions were 

	

13	 killed within 30 sec, and greater than six orders of magnitude reductions were 

	

14	 observed after 180 mm. Results suggested that direct exposure to UV irradiation 

	

15	 was the most limiting environmental factor for B. subtilis survival on the surface, 

	

16	 whereas simulated Mars gas composition, pressure and temperature had no 

	

17	 measurable effects (Schuerger etal., 2003). Cockell et al. (2005) had similar UV-

	

18	 dependent results when studying the survivability of the cyanobacterium 

	

19	 Chroococcidiopsis sp. 029 under simulated martian conditions. Together, these 

	

20	 experiments predict a low probability of bacterial surface contamination on Mars, 

	

21	 provided that terrestrial organisms are exposed to an ambient, daytime UV flux 
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1	 (Schuerger et al., 2003; 2006; Cockell et al., 2005). The absence or attenuation of 

2	 UV light, however, might create very different survivability scenarios. Both 

3	 Schuerger et al. (2003) and Cockell et al. (2005) found that the survival of 

4	 bacteria increased significantly when shielded from UV irradiation by thin layers 

5	 of dust or rocks. In fact, Chroococcidiopsis sp. 029 retained viability after 8 hrs 

6	 under rock coverage only 1 mm thick (Cockell et al., 2005) and B. subtilis 

7	 survived 8 hrs of UV irradiation when covered by only a 0.5 mm coating of dust 

8	 (Schuerger et al., 2003). In addition, Morozova etal. (2006) found that after a 22 

9	 d exposure to simulated thermo-physical conditions at martian low- and mid-

10	 latitudes, up to 90% of methanogenic archaea from Siberian permafrost survived 

11	 in pure cultures as well as in environmental samples. It is conceivable that 

12	 microbes on the external surfaces of Mars spacecraft will be protected from 

13	 radiation by atmospheric dust events that deposit dust on the spacecraft surface, or 

14	 by mission operations that involve drilling into rocks or driving through regolith. 

15	 Psychrophilic and psychrotolerant bacteria may possess unique capacities 

16	 for dealing with the martian surface environment (Cockell et al., 2005; National 

17	 Research Council, 2005; Nicholson et al., 2005). Throughout extremely cold 

18	 climates on Earth, these specially-adapted microorganisms not only survive but 

19	 thrive in conditions with low temperatures, oligotrophic nutrient regimes, and 

20	 limited water resources (Cavicchioli, 2002). Recently cultured bacteria from 
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1	 Siberian permafrost and Antarctic ice sheets can metabolize at temperatures down 

	

2	 to —20 °C (Rivkina, 2000; Bakermans et al., 2006). 

	

3	 The primary objective of the current study was to determine whether the 

	

4	 psychrotolerant bacterium, Psychrobacter cryohalolentis K5, could survive under 

	

5	 simulated Mars conditions if provided with adequate levels of nutrients, salts, and 

	

6	 moisture. Survivability was defined by the viability of bacterial cells. The 

	

7	 experiments herein did not measure growth or replication of P. cryohalolentis. 

	

8	 The goal was to determine whether the survivability of P. cryohalolentis was 

	

9	 greater than the mesophilic species tested previously in simulated martian 

	

10	 conditions (Schuerger et al., 2003; Cockell et al., 2005; Newcombe et al., 2005; 

	

11	 Schuerger et al., 2005; Schuerger and Nicholson, 2006; Tauscher et al., 2006), 

	

12	 particularly when protected from UV irradiation. 

13 

14 MATERIALS and METHODS 

	

15	 Strain isolation and physiology 

	

16	 Psychrobacter cryohalolentis K5 was isolated from a —12 °C subsurface 

	

17	 hypersaline cryopeg in the Kolyma lowlands of Siberia, Russia. Bakermans et al. 

	

18	 (2006) characterized the bacterium as a gram-negative, strictly aerobic, 

	

19	 coccobacillus that was non-motile, non-pigmented, non-spore forming, and 

	

20	 capable of growth in a pH range from 6.0 to 9.5 and a salinity range of 0 to 1.7 M 

	

21	 NaCl. Cell dimensions were 0.9-1.3 tm long and 0.5-0.8 tm wide. The optimal 
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1	 growth temperature for the species was 22 °C, but the growth range stretched 

	

2	 from -10 to 30 °C (Bakermans et al., 2006). At its optimal growth temperature, 

	

3	 generation time was just under 5 hrs (Bakermans and Nealson, 2004). 

4 Standard microbiological procedures 

	

5	 The P. cryohalolentis K5 strain was cultivated at room temperature (25 

	

6	 °C) in a liquid growth medium made from the following chemicals in 1 L of 

	

7	 deionized water: 1 g of BactoTM yeast extract, 5 g of BactoTM peptone, and 17 g of 

	

8	 sea salts. For solid media, 16.5 g of BactoTM agar were added to 1 L of solution. 

9 All media ingredients were obtained from Becton Dickinson and Company 

	

10	 (Sparks, MD, USA), except for the sea salts, which were obtained from Sigma-

	

11	 Aldrich Chemical Company (St. Louis, MO, USA). 	 Inoculum. of P. 

	

12	 cryohalolentis was prepared 24 hrs prior to use by incubating vegetative cells in a 

	

13	 test tube with 10 mL of liquid media at 25 °C. On solid media at 25 °C, colonies 

	

14	 grew as circular, smooth, opaque and - 1 mm diameter after 36-48 hrs. 

	

15	 In order to simulate bacterial adhesion to, and survival on, spacecraft 

	

16	 surfaces, vegetative cells of P. cryohalolentis were placed on aluminum coupons 

	

17	 (2 cm x 1 cm x 1 mm) previously coated with a chromate conversion film (Indite 

	

18	 14-2, MacDermid, Inc., Waterbury, CT, USA) (see Schuerger et at., 2005; 2008). 

	

19	 The Indite surface treatment reduces corrosion on aluminum and is often used on 

	

20	 spacecraft aluminum components (Schuerger et at., 2005). The aluminum 

	

21	 coupons were dry-heat sterilized at 130 °C for 24 hrs and allowed to cool to 25 °C 
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1	 before bacteria were deposited onto the aluminum surfaces. Under aseptic 

	

2	 conditions, vegetative cells of P. cryohalolentis from liquid cultures were applied 

	

3	 to the center of coupons in 100-iL spots and allowed to dry at 25 °C in a laminar 

4 flow hood for 2 hrs (NuAire Inc., model NU-201-430, Plymouth, MN, USA). 

	

5	 Once dried the media/salt residue would form a crystalline matrix that both 

	

6	 encased bacteria and provided nutrients to sustain cells (Fig. 1). This coupon 

	

7	 preparation procedure was standardized and used for all experiments. Media/salt 

	

8	 residues on coupons were imaged using a high-resolution video microscope 

9 (model VH-7000, Keyence Corp. of America, Woodcliff Lake, NJ, USA). 

10 Desiccation experiment for comparing coupon preparation techniques 

	

11	 A 24-hr desiccation experiment was conducted with P. cryohalolentis at 

	

12	 room temperature (25 °C) and pressure (1013 mbar). The purpose of the 

	

13	 experiment was twofold: (i) to evaluate the desiccation resistance of the bacterium 

	

14	 on simulated spacecraft surfaces, and (ii) to determine if survivability was 

	

15	 enhanced by encasement within the medium/salt matrix. Two sets of coupons 

	

16	 were prepared for the experiment, hereafter referred to as 'media' and 'non-

	

17	 media' coupons. The media coupons contained P. cryohalolentis vegetative cells 

	

18	 embedded in the medium/salt matrix and dried onto the surface of the coupons, as 

	

19	 described in the previous section. For the non-media coupons, cells were grown 

	

20	 on solid sea-salt media for 24 hrs at 25 °C, mechanically harvested and diluted in 

	

21	 sterile deionized water (SDIW) to densities of 3.19 x 10 9 cells per mL as 
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1	 quantified by a Spectronic-20 spectrometer (model 4001, Spectron Instruments, 

2	 USA) set at 400 nm. Quantified cell suspensions were then spotted onto 

3	 spacecraft coupons in 100-iL volumes per coupon. The T = 0 samples for both 

4 the media and non-media coupons were sampled, while the remaining coupons 

5	 were placed in a Petri dish to desiccate in a dark laminar flow hood for 24 hours. 

6 The surviving bacteria from the media coupons for T = 0 and T = 24 hour samples 

7 were estimated by the Most Probable Number (MPN) method. The minimum 

8	 detection limit of the MPN assay was 10 cells per coupon. Cells were re-

9	 suspended in 100 pL of liquid media, followed immediately by processing 

10	 through a series of 10-fold liquid media dilutions, in which each diluted sample 

11	 was plated onto solid media. For the non-media coupons, the method described 

12	 by Schuerger et al. (2003; 2006) was followed, in which coupons were placed 

13	 into plastic tubes with autoclaved deionized water and shaken with 1 g of heat-

14	 sterilized silica sand (24 h at 130 °C). Next, 10-fold serial dilutions with sterile 

15	 water were performed and aliquots were dispensed onto solid media and the 

16 number of viable cells estimated by MPN. For both the media and non-media 

17	 coupons, the numbers of viable bacteria were estimated after cultures had 

18	 incubated at 25 °C for 42 hr. 

19 Mars Simulation Chamber experiments 

20	 The Mars Simulation Chamber (MSC) is located in the Space Life 

21	 Sciences Laboratory at Kennedy Space Center, FL, USA. Details of the MSC 

1 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801



Page 11 of 35
	

Astrobiology 

Smith et al,	 Astrobiology 

	

1	 construction and mechanical function have been published elsewhere (Schuerger 

	

2	 et al., 2008). The MSC system was capable of reproducing martian surface 

	

3	 environmental conditions, including: pressure (down to 0.1 mbar), temperature (-

	

4	 100 to +200 °C), atmospheric gas composition (top five gases; see below), and 

	

5	 atmospheric dust loads (optical depths [t] from dust-free skies [0.1] to global dust 

	

6	 storms [3.5]). Temperature for all experiments was maintained at —12.5 °C, based 

	

7	 on average daytime highs recorded by the Viking 1 and 2 landers (Owen, 1992) 

	

8	 and just below the minimum growth temperature reported for P. cryohalolentis 

	

9	 (Bakermans et al., 2006). Pressure was fixed at 7.1 mbar. A gas mixture (Boggs 

	

10	 Gases, Titusville, FL) representing the martian atmosphere was proportioned into 

	

11	 the chamber using a mass-flow controller and consisted of: CO 2 (95.3%), N2 

	

12	 (2.7%), Ar (1.6%), 02 (0.2%) and H20 (0.03%). Ultraviolet irradiation was 

	

13	 generated within the spectral range of 200-400 nm based on a Mars UV model 

	

14	 described previously (Schuerger et al., 2003; 2006). Fluence values for UVC 

15 (200-280 nm), UVB (280-320 nm), and UVA (320-400 nm) were 4.55, 8.82 and 

	

16	 36.95 W/m2, respectively. Total UV flux from this calibration was 50.32 W/m2. 

	

17	 For the first Mars simulation experiment, UV light was passed through 

	

18	 neutral density filters (Maier Phototonics, Inc., Manchester Center, VT) to create 

	

19	 an optical depth of t = 0.1, which simulated the surface of equatorial Mars at its 

	

20	 mean orbital distance from the Sun, under dust-free skies (Schuerger et al., 2003; 

	

21	 2006). Bacteria were prepared using the standard spotting technique on 

1 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 
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1	 aluminum coupons in which vegetative cells were embedded within a 

2	 medium/salt matrix. The number of bacteria applied in 100-jiL drops onto 

3	 coupons was estimated to be 1.8 x 1010 from 9 replicates. Coupons were loaded 

4	 into the MSC in pre-sterilized glass Petri dishes, which sat directly on the upper 

5	 surface of the LN 2 cold-plate. The first experiment was designed to measure 

6	 bacterial survival over increasing time exposures, where one sol was the 

7	 equivalent of 8 hrs UV exposure and 16 hrs of darkness. Time-steps for the 

8	 experiment were 0.5, 1, 3 and 9 sols. Each time-step had bacterial coupons 

9	 divided into one of three groups (each with triplicate samples) designed to 

10	 pinpoint the effect of UV irradiation on survivability: Mars (+UV), Mars (—UV), 

11	 and Earth controls (-UV). The Mars (+UV) coupons were inside the MSC and 

12	 exposed directly to UV irradiation; the Mars (—UV) coupons were also inside the 

13	 MSC but completely protected from UV light; and the Earth control (—UV) 

14 coupons were placed outside the MSC, wrapped with aluminum foil, and left at 

15	 room conditions (25 °C, 1013 mbar). Following the martian simulation, all 

16	 coupons were assayed for viability using the MPN method described above. The 

17	 experiment was repeated 1 week later under identical conditions, yielding a total 

18	 of 6 replicates per treatment. 

19	 The second Mars simulation experiment was designed to determine how 

20	 atmospheric dust loading might affect survivability of bacteria cells embedded 

21	 within the dried media/salt matrix. Neutral density filters (Fig. 2) composed of 

1 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801
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1	 silica glass and a thin Ni-Cr-Fe alloy coating were used to establish optical depths 

	

2	 (t) of 0. 1, 0.5 or 3.5 for UV irradiation, effectively simulating (i) a dust-free CO2 

	

3	 atmosphere, (ii) a typical clear sky condition with low levels of dust, or (iii) a 

	

4	 global dust storm condition (sensu Schuerger et al., 2003; 2006). A UV 

	

5	 spectrometer (model ILI400A, International Light, Newburyport, WA, USA), 

	

6	 was used to measure UVC values of 4.55, 3.57 and 0.21 W/m2 for optical depths 

	

7	 of 0.1, 0.5, and 3.5, respectively. Alongside the three different simulated dust 

	

8	 loading conditions, additional bacterial coupons were shielded from all UV 

	

9	 irradiation within the MSC, placed in a sample holder fitted with an opaque 

	

10	 aluminum plate instead of a neutral density filter (Fig. 2). A set of coupons were 

	

11	 held as Earth controls outside of the MSC and maintained at room temperature 

	

12	 conditions without UV exposures. Coupons were exposed to martian conditions 

	

13	 of 7.1 mbar, —10 °C, and Mars gas composition for 24 hrs with a 1-sol UVC 

	

14	 simulation (i.e., 8 hrs of UV irradiation), and immediately assayed for survival. 

	

15	 The experiment was repeated under identical conditions, for a total of 6 replicates 

	

16	 per treatment. 

	

17	 Statistical treatment of data 

	

18	 Analysis of survivability values (log-transformed means) was performed 

	

19	 using the statistical program R version 2.3.1 (The R Foundation for Statistical 

	

20	 Computing, Vienna, Austria, 2006). Data were subjected to one-way permutation 

	

21	 tests, both rank and pairwise, to compare mean population differences across 
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1	 groups and controls at a 95% confidence level (P < 0.05). For the Mars 

	

2	 simulations, the Wilcox test was used to examine population values across time 

	

3	 between different treatment groups. The Kruskal-Wallis rank sum test was used 

	

4	 to analyze population values across time within individual treatment groups. 

5 RESULTS 

6 Survivability from desiccation experiment 

	

7	 The desiccation experiment sought to determine the effects of drying 

	

8	 vegetative cells of P. cryohalolentis onto aluminum coupons either alone (i.e., no 

	

9	 buffers or medium/salt matrix) or embedded in a medium/salt matrix. Cells of P. 

	

10	 cryohalolentis in both the media and non-media treatments were desiccated under 

	

11	 identical environmental conditions for 24 hrs. Survivability assays showed a 

	

12	 decline of several orders of magnitude for both experimental groups over the 

	

13	 desiccation interval (Fig. 3). Although both groups declined, cells of P. 

	

14	 cryohalolentis embedded within the media/salt matrix survived better than the 

	

15	 non-media cells (permutation test: P = 0.032); a 4-order of magnitude reduction 

	

16	 compared to a 6-order of magnitude reduction, respectively, was observed. The 

	

17	 rate of decline for the bacteria in the media group was consistent with the results 

	

18	 reported in the Mars simulations. Although a difference in initial population 

	

19	 values for media and non-media coupons existed due to the disparate preparation 

	

20	 techniques, this did not affect measuring survivability as a proportional value. 

21 Survivability from Mars Simulation Chamber experiments 
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1	 The survivability of P. cryohalolentis was negatively affected by 

2	 exposures to UV irradiation under simulated Mars low-dust sky conditions (t = 

3	 0.1) (Fig. 4). Survivability was dependent upon the treatment type and length of 

4	 time exposure (Kruskal-Wallis rank sum test: P < 0.05). The number of viable 

5	 cells after the Mars (+UV) treatment were significantly lower compared to the 

6	 Mars (—UV) and Earth control (—UV) groups (Wilcox Test: P < 0.001), and fell 

7	 below the detection limits of the MPN assay by the end of sol 1. The difference 

8 between the number of viable cells on the Mars (—UV) chamber coupons and 

9	 Earth control (—UV) coupons was not statistically significant (Wilcox Test: P = 

10	 0.156). Although surviving populations of P. cryohalolentis for both (—UV) 

11	 treatments persisted for the 9 sol simulation, the number of viable cells still 

12	 declined by lOOx over the course of the experiment (Kruskal-Wallis rank sum 

13	 test: Mars (—UV) coupons P = 0.0149; Earth control (—UV) coupons P = 0.0 120). 

14	 In the second MSC experiment the recovered numbers of vegetative cells 

15	 in each dust treatment were significantly lower than control treatments (Kruskal-

16	 Wallis rank sum test: P < 0.001) (Fig. 5). No viable cells of P. cryohalolentis 

17	 were recovered from coupons exposed to a dust simulation of r = 0.1. 

18	 Furthermore, the t = 0.5 dust simulation experiment yielded approximately 1 x 

19	 10 viable cells per coupon, a 4-order of magnitude decline from the (—UV) Mars 

20	 controls. The greatest numbers of viable bacteria were recovered from the t = 
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1	 coupons even though it was several orders of magnitude lower than that of the 

	

2	 initial time-step. 

3 DISCUSSION 

	

4	 The desiccation experiment demonstrated that P. cryohalolentis was 

	

5	 especially sensitive to drying, by exhibiting a > 6 order of magnitude population 

	

6	 reduction in recovered cells desiccated for 24 hrs. In order for a terrestrial 

	

7	 microbe to survive and proliferate on Mars, it would need to tolerate, at minimum, 

	

8	 desiccating conditions during the six-month long interplanetary transit, and also 

	

9	 on the dry planet surface for periods long enough to become dispersed into niches 

	

10	 conducive for growth. Hence, the importance of the P. cryohalolentis population 

	

11	 decline in the desiccation experiment was threefold: (1) some of the Mars 

	

12	 Simulation Chamber viability reductions could be attributed to desiccation alone, 

	

13	 (2) P. cryohalolentis did not appear tolerant to the kinds of desiccating conditions 

	

14	 that would arise in a forward contamination context during a Mars robotic 

	

15	 mission, and (3) even the presence of a media/salt matrix (i.e., biofilm) did not 

	

16	 provide sufficient long-term protection from water stress to dramatically enhance 

	

17	 survival over non-media treatments. 

	

18	 The inability of P. cryohalolentis to maintain its population in the 24-hr 

	

19	 desiccation period was unexpected, considering that this bacterium was recovered 

	

20	 from salty, oligotrophic permafrost (Bakermans et al., 2006). When bacteria 

	

21	 inoculated into liquid media were applied onto coupons, the dried residues were 
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2 
3 
4

1 composed of a crystalline matrix that (1) encased bacteria with an environmental 

9 2 barrier, and (2) provided nutrients to cells.	 The desiccation experiment revealed 
10

3 the extent of enhanced survivability was minimal, by showing in parallel, the 

4 declining population of the same P. cryohalolentis cells without the media/salt 

16 5 matrix.	 It is also worth noting that the desiccation experiment was conducted 

6 outside the MSC in a laminar flow hood at room-normal humidity [40-50% at 23 

7 °C)], not the 0.03% H20 present in the martian atmosphere. 	 True desiccation 

23 8 would have required a more sophisticated drying device, such as the instrument 

9 described by Kendrick and Kral (2006), which would likely have further reduced 

28 10 the survivability of P. cryohalolentis. 
29 
30 11 Even	 assuming	 that	 P.	 cryohalolentis	 could	 tolerate	 interplanetary 

12 desiccation and reach the surface of Mars in viable form, the current study 

34 
35 13 indicates that UV irradiation would kill any sun-exposed cells within 8 hrs or less. 

14 This death rate is slightly slower than previously reported values for the bacterium 

15 Bacillus subtilis HA101 (Schuerger et al., 2003; 2006) and Chroococcidiopsis sp. 

42 16 029 (Cockell et al., 2005).	 The slightly increased length of time (up to 8 hrs) 

17 observed for survival with P. ciyohalolentis might be related to the protective 

18 medium/salt matrix that surrounded the vegetative cells in the current study. For 

49 19 example, with B. subtilis HA1O1 (Schuerger et al., 2003), no microbial biofilm 

20 was	 associated with endospores exposed to martian conditions, but some 

54 21 extracellular material was observed associated with cells of Chroococcidiopsis sp. 
55 
56 
57 
53 
59 
60
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1	 029 in other similar Mars simulations (Cockell et al., 2005). Comparing these 

2	 two papers with the results from the current study, the numbers of recovered 

3	 viable cells may be correlated with an increase of extracellular material (B. 

4	 subtilis < Chroococcidiopsis <P. cryohalolentis). 

5	 The first Mars simulation experiment isolated UV irradiation as the 

6	 primary biocidal factor by showing significantly different survivability across 

7 Earth control (—UV), MSC (—UV), and MSC (+UV) treatments. Bacteria exposed 

8	 to direct UV irradiation died within 1 sol, whereas cells exposed to identical 

9	 conditions but shielded from UV light survived beyond that exposure length; yet 

10	 did fall by 2 orders of magnitude by 9 sols. It is worth noting that the dramatic 

11	 reductions observed for (+UV) exposed Mars samples occurred while the 

12	 vegetative cells were embedded in a medium/salt matrix that would have been 

13	 expected to partially or fully attenuate the UV irradiation. Previous studies 

14	 (Mancinelli and Klovstad, 2000; Schuerger et al., 2005) have suggested that 

15	 biofilms might significantly enhance the survival of microorganisms under 

16	 martian conditions by attenuating solar UV irradiation. However, the results of 

17	 the current study do not support this conclusion. 

18	 Since Earth (—UV) and Mars (—UV) populations of P. cryohalolentis 

19	 changed similarly across time and were sustained through the final time-step (so! 

20	 9), it was concluded that martian temperature, pressure, and gas composition had 

21	 little effect on P. cryohalolentis survival. This result is consistent with previous 
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1	 reports using a variety of different microorganisms (Schuerger et al., 2003; 

	

2	 Cockell et at., 2005; Nicholson et al., 2005; Schuerger et al., 2006) and may be 

	

3	 attributed primarily to water stress. 

	

4	 Increasing simulated dust levels enhanced the survivability of vegetative 

	

5	 cells of P. cryohalolentis over 1 sol. The low-dust sky treatment (t = 0.1) killed 

	

6	 all bacteria by 1 sol; reproducing results from the first MSC experiment Mars 

	

7	 (+UV) coupons. Only one-sixth of the coupons under the normal clear-sky dust 

	

8	 scenario (t = 0.5) retained viable bacteria after 1 sol simulations. The global dust 

	

9	 storm scenario (t = 3.5) yielded higher survivability, but with only moderate 

	

10	 significance, suggesting that even trace amounts of UV irradiation on Mars may 

	

11	 dramatically reduce bacterial survival. 

12 

13 CONCLUSIONS 

	

14	 Psychrophilic and psychrotolerant microorganisms have been regarded as 

	

15	 serious contamination threats to Mars (National Research Council, 2005). P. 

	

16	 cryohalolentis, however, had virtually no tolerance to the martian environment, 

	

17	 even during scenarios where UV irradiation was partially or fully attenuated. 

	

18	 Since survival of P. cryohalolentis was strongly inhibited by martian surface 

	

19	 conditions, subsequent growth, replication, and proliferation seem unlikely. 

	

20	 Desiccation and UV irradiation were identified as the primary lethal factors in 

	

21	 these simulations; consistent with results reported for mesophilic bacteria tested 
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1	 under similar martian conditions (Cockell et al., 2005; Newcombe et al., 2005; 

	

2	 Schuerger etal., 2003; 2005; 2006; Tauscher etal., 2006). 

	

3	 While simulated atmospheric dust conditions in the current study 

	

4	 permitted small amounts of biocidal UV light to reach cells of P. cryohalo!entis, 

	

5	 natural UV-shields that more thoroughly block light on the martian surface are 

	

6	 imaginable. Future research should continue to explore how the survivability of 

	

7	 psychrophilic and psychrotolerant bacteria on the surface of Mars changes with 

	

8	 UV-shielding. Covering bacteria with a thin layer of dust, for example, should 

	

9	 increase survivability (Mancinelli and Klovstad, 2000; Schuerger et al., 2003), as 

	

10	 would embedding bacteria into rocks or crevices within spacecraft material 

	

11	 (Schuerger et al., 2005). If UV irradiation was totally eliminated as an 

	

12	 environmental factor, desiccation could become the major constraint on 

	

13	 survivability of P. cryoha!o!entis. In the results presented here, viable P. 

	

14	 cryoha!olentis cells at the final MSC experimental time-step (sol 9) should not 

	

15	 necessarily be considered Mars-adapted, since our results, and those of (Beaty et 

	

16	 al., 2006) indicate that water stress might continue to decrease bacterial 

	

17	 survivability over time. More research, therefore, is needed to understand the 

	

18	 survivability of psychrophilic and psychrotolerant microbes over time in cold, 

	

19	 extremely desiccating conditions. Identification of purported biogenic trace gases 

	

20	 and microbial cells in ice cores suggest that certain bacteria can survive hundreds 

	

21	 of thousands of years at —40 °C, maintaining DNA and protein integrity so that 
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1	 when conditions improve cells can reactivate and grow (Price and Sowers, 2004; 

2	 Napolitano and Sham, 2004). This might mean that contaminating bacteria cells 

3	 which do not grow or proliferate on Mars during the period of robotic or human 

4	 exploration could eventually be revitalized on a geological timescale (Willerslev 

5	 et al., 2004). Therefore, until the survivability of additional extremophile life 

6	 forms has been evaluated under simulated martian conditions, the effort to 

7	 classify microorganisms found in spacecraft assembly facilities and to develop 

8	 economical methods to sanitize spacecraft seems to be an appropriate 

9	 conservative measure (Schuerger et al., 2003; La Duc et al., 2004; Tauscher et al., 

10	 2006; Moissl et al., 2007). 

11 
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1 FIGURE LEGENDS 
2 
3 Fig. 1. Coupon preparation method for Psychrobacter cryohalolentis KS. (A) 

4	 The standard aluminum coupon preparation procedure used for all experiments, 

5	 with the 100-giL liquid media/salt matrix spotted on each coupon and containing 

6	 P. cryohalolentis vegetative cells. (B) Microscopic view of a coupon surface after 

7	 the liquid media spot had dried; i.e., media technique. (C) Microscopic view of a 

8	 coupon surface prepared with liquid water; i.e., non-media technique. 

9 Fig. 2. Experimental setup for Mars Simulation Chamber (MSC) atmospheric 

10	 dust experiment. Treatments are 4hown resting on the liquid-nitrogen (LN2) cold 

11	 plate within the MSC system with neutral density filters calibrated to simulate 

12	 different atmospheric dust loads. The Mars (—UV) control is located at the far 

13	 back, while the three dust scenarios are in the foreground: Mars dust load 

14	 simulations are shown for r = 0.1 (upper left); t = 0.5 (upper right); and t = 

15	 (bottom right). The coupons within the glass Petri dish (lower left) can be 

16	 disregarded. The experiment delivered 8 hrs of UV irradiation during a total Mars 

17	 simulation time of 24 hrs. 

18	 Fig. 3. Effect of preparation technique on P. cryohalolentis K5 desiccation over a 

19	 24-hr period. The standard liquid media preparation technique (used throughout 

20	 this study) was compared to a water-diluted, non-media procedure which left 

21	 bacterial cells unprotected on coupon surfaces. 	 Both coupon preparation 

22	 treatments were desiccated at 25 °C for 24 hrs and were then assayed for survival 
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1	 by the MPN assay. Values are means of multiple replicates; bars represent 

	

2	 standard errors of the means. 

	

3	 Fig. 4. Mars Simulation Chamber experiment under simulated low-dust sky (t 

	

4	 0.1) conditions. Psychrobacter cryohalolentis K5 doped coupons (i.e., embedded 

	

5	 in the medium/salt matrix) were exposed to simulated martian conditions for five 

	

6	 distinct time intervals. Values are means of six replicates; bars represent standard 

	

7	 errors of the means. 

	

8	 Fig. 5. Atmospheric dust experiment varying irradiation exposure in MSC. 

9 Psychrobacter cryohalolentis K5 doped coupons were exposed to martian 

	

10	 conditions under different simulated atmospheric conditions for 1 sol (i.e., 24-hr 

	

11	 in MSC with 8-hr UV irradiation). For t = 0.1, the asterisk indicates that the 

	

12	 number of bacteria recovered were below the MPN detection limit of 10 cells per 

	

13	 coupon (dotted line) for all replicates (i.e., 100% of coupons were negative). 

	

14	 Values are means of six replicates; bars represent standard errors of the means. 

15
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FIGURE LEGENDS 

Fig. 1. Coupon preparation method for Psychrobacter cryohalolentis K5. (A) The 

standard aluminum coupon preparation procedure used for all experiments, with the 100-

sL liquid media/salt matrix spotted on each coupon and containing P. cryohalolentis 

vegetative cells. (B) Microscopic view of a coupon surface after the liquid media spot 

had dried; i.e., media technique. (C) Microscopic view of a coupon surface prepared 

with liquid water; i.e., non-media technique. 

Fig. 2. Experimental setup for Mars Simulation Chamber (MSC) atmospheric dust 

experiment. Treatments are shown resting on the liquid-nitrogen (LN 2) cold plate within 

the MSC system with neutral density filters calibrated to simulate different atmospheric 

dust loads. The Mars (—UV) control is located at the far back, while the three dust 

scenarios are in the foreground: Mars dust load simulations are shown for t = 0.1 (upper 

left); t = 0.5 (upper right); and t = 3.5 (bottom right). The coupons within the glass Petri 

dish (lower left) can be disregarded. The experiment delivered 8 hrs of UV irradiation 

during a total Mars simulation time of 24 hrs. 

Fig. 3. Effect of preparation technique on P. cryohalolentis K5 desiccation over a 24-hr 

period. The standard liquid media preparation technique (used throughout this study) was 

compared to a water-diluted, non-media procedure which left bacterial cells unprotected 

on coupon surfaces. Both coupon preparation treatments were desiccated at 25 °C for 24 

hrs and were then assayed for survival by the MPN assay. Values are means of multiple 

replicates; bars represent standard errors of the means. 

Fig. 4. Mars Simulation Chamber experiment under simulated low-dust sky (t = 0.1) 

conditions. Psychrobacter cryohalolentis K5 doped coupons (i.e., embedded in the 
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medium/salt matrix) were exposed to simulated martian conditions for five distinct time 

intervals. Values are means of six replicates; bars represent standard errors of the means. 

Fig. 5. Atmospheric dust experiment varying irradiation exposure in MSC. 

Psychrobacter cryohalolentis K5 doped coupons were exposed to martian conditions 

under different simulated atmospheric conditions for I sot (i.e., 24-hr in MSC with 8-hr 

UV irradiation). For t = 0. 1, the asterisk indicates that the number of bacteria recovered 

were below the MPN detection limit of 10 cells per coupon (dotted line) for all replicates 

(i.e., 100% of coupons were negative). Values are means of six replicates; bars represent 

standard errors of the means. 
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