9 research outputs found

    Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage

    Get PDF
    Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit cyclic volumetric expansion upon reversible ion transport. Such chemomechanical coupling is typically far from thermodynamic equilibrium, and thus is challenging to quantify experimentally and computationally. In situ measurements and atomistic simulations are under rapid development to explore how this coupling can be used to potentially improve both device performance and durability. Here, we review the commonalities of coupling between electrochemical and mechanical states in fuel cell and battery materials, illustrating with specific cases the progress in materials processing, in situ characterization, and computational modeling and simulation. We also highlight outstanding questions and opportunities in these applications – both to better understand the limiting mechanisms within the materials and to significantly advance the durability and predictability of device performance required for renewable energy conversion and storage.United States. Dept. of Energy (Basic Energy Sciences Division of Materials Sciences and Engineering, grant DE-SC0002633)United States. Dept. of Energy (Office of Science, Graduate Fellowship Program (DOE SCGF))United States. American Recovery and Reinvestment Act of 2009 (ORISE-ORAU, contract no. DE-AC05-06OR23100))United States. Dept. of Energy. Division of Materials Sciences and Engineering (MIT/DMSE Salapatas Fellowship)United States. Air Force Office of Scientific Research (Presidential Early Career Award in Science and Engineering (PECASE)

    Use of massively parallel molecular dynamics simulations for radiation damage in pyrochlores

    No full text
    DL_POLY_3 is a general purpose molecular dynamics (MD) simulation package designed to simulate systems of the order of tens of millions of particles and beyond by efficiently harnessing the power of modern computer clusters. Here we discuss the package design, functionality and report on performance and capability limits. We then report the application of DL_POLY_3 to study radiation cascades in Gd2Ti2O7 and Gd2Zr2O7, potential materials for high-level radioactive waste storage and discuss problems associated with the analysis of the cascades. We see little direct amorphisation but rather the start of a transition to the fluorite structure which is more pronounced for the Zr than the Ti compound
    corecore