17 research outputs found

    A multicenter study on Leigh syndrome: Disease course and predictors of survival

    Get PDF
    Background: Leigh syndrome is a progressive neurodegenerative disorder, associated with primary or secondary dysfunction of the mitochondrial oxidative phosphorylation. Despite the fact that Leigh syndrome is the most common phenotype of mitochondrial disorders in children, longitudinal natural history data is missing. This study was undertaken to assess the phenotypic and genotypic spectrum of patients with Leigh syndrome, characterise the clinical course and identify predictors of survival in a large cohort of patients. Methods. This is a retrospective study of patients with Leigh syndrome that have been followed at eight centers specialising in mitochondrial diseases in Europe; Gothenburg, Rotterdam, Helsinki, Copenhagen, Stockholm, Brussels, Bergen and Oulu. Results: A total of 130 patients were included (78 males; 52 females), of whom 77 patients had identified pathogenic mutations. The median age of disease onset was 7 months, w

    Safety and effectiveness of ataluren in patients with nonsense mutation DMD in the STRIDE Registry compared with the CINRG Duchenne Natural History Study (2015-2022): 2022 interim analysis

    Get PDF
    OBJECTIVE: Strategic Targeting of Registries and International Database of Excellence (STRIDE) is an ongoing, international, multicenter registry of real-world ataluren use in individuals with nonsense mutation Duchenne muscular dystrophy (nmDMD) in clinical practice. This updated interim report (data cut-off: January 31, 2022), describes STRIDE patient characteristics and ataluren safety data, as well as the effectiveness of ataluren plus standard of care (SoC) in STRIDE versus SoC alone in the Cooperative International Neuromuscular Research Group (CINRG) Duchenne Natural History Study (DNHS). METHODS: Patients are followed up from enrollment for at least 5 years or until study withdrawal. Propensity score matching was performed to identify STRIDE and CINRG DNHS patients who were comparable in established predictors of disease progression. RESULTS: As of January 31, 2022, 307 patients were enrolled from 14 countries. Mean (standard deviation [SD]) ages at first symptoms and at genetic diagnosis were 2.9 (1.7) years and 4.5 (3.7) years, respectively. Mean (SD) duration of ataluren exposure was 1671 (56.8) days. Ataluren had a favorable safety profile; most treatment-emergent adverse events were mild or moderate and unrelated to ataluren. Kaplan-Meier analyses demonstrated that ataluren plus SoC significantly delayed age at loss of ambulation by 4 years (p < 0.0001) and age at decline to %-predicted forced vital capacity of < 60% and < 50% by 1.8 years (p = 0.0021) and 2.3 years (p = 0.0207), respectively, compared with SoC alone. CONCLUSION: Long-term, real-world treatment with ataluren plus SoC delays several disease progression milestones in individuals with nmDMD. NCT02369731; registration date: February 24, 2015

    Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease

    No full text
    The aim of this study was to compare the value of serum biomarkers, fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), with histological analysis of muscle in the diagnosis of mitochondrial disease. We collected 194 serum samples from patients with a suspected or known mitochondrial disease. Biomarkers were analyzed blinded using enzyme‐labeled immunosorbent assay. Clinical data were collected using a structured questionnaire. Only 39% of patients with genetically verified mitochondrial disease had mitochondrial pathology in their muscle histology. In contrast, biomarkers were elevated in 62% of patients with genetically verified mitochondrial disease. Those with both biomarkers elevated had a muscle manifesting disorder and a defect affecting mitochondrial DNA expression. If at least one of the biomarkers was induced and the patient had a myopathic disease, a mitochondrial DNA expression disease was the cause with 94% probability. Among patients with biomarker analysis and muscle biopsy taken <12 months apart, a mitochondrial disorder would have been identified in 70% with analysis of FGF21 and GDF15 compared to 50% of patients whom could have been identified with muscle biopsy alone. Muscle findings were nondiagnostic in 72% (children) and 45% (adults). Induction of FGF21 and GDF15 suggest a mitochondrial etiology as an underlying cause of a muscle manifesting disease. Normal biomarker values do not, however, rule out a mitochondrial disorder, especially if the disease does not manifest in muscle. We suggest that FGF21 and GDF15 together should be first‐line diagnostic investigations in mitochondrial disease complementing muscle biopsy

    Diagnostic value of serum biomarkersFGF21andGDF15compared to muscle sample in mitochondrial disease

    Get PDF
    Under embargo until: 2021-08-28The aim of this study was to compare the value of serum biomarkers, fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), with histological analysis of muscle in the diagnosis of mitochondrial disease. We collected 194 serum samples from patients with a suspected or known mitochondrial disease. Biomarkers were analyzed blinded using enzyme‐labeled immunosorbent assay. Clinical data were collected using a structured questionnaire. Only 39% of patients with genetically verified mitochondrial disease had mitochondrial pathology in their muscle histology. In contrast, biomarkers were elevated in 62% of patients with genetically verified mitochondrial disease. Those with both biomarkers elevated had a muscle manifesting disorder and a defect affecting mitochondrial DNA expression. If at least one of the biomarkers was induced and the patient had a myopathic disease, a mitochondrial DNA expression disease was the cause with 94% probability. Among patients with biomarker analysis and muscle biopsy taken <12 months apart, a mitochondrial disorder would have been identified in 70% with analysis of FGF21 and GDF15 compared to 50% of patients whom could have been identified with muscle biopsy alone. Muscle findings were nondiagnostic in 72% (children) and 45% (adults). Induction of FGF21 and GDF15 suggest a mitochondrial etiology as an underlying cause of a muscle manifesting disease. Normal biomarker values do not, however, rule out a mitochondrial disorder, especially if the disease does not manifest in muscle. We suggest that FGF21 and GDF15 together should be first‐line diagnostic investigations in mitochondrial disease complementing muscle biopsy.acceptedVersio

    Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease

    No full text
    Abstract The aim of this study was to compare the value of serum biomarkers, fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), with histological analysis of muscle in the diagnosis of mitochondrial disease. We collected 194 serum samples from patients with a suspected or known mitochondrial disease. Biomarkers were analyzed blinded using enzyme-labeled immunosorbent assay. Clinical data were collected using a structured questionnaire. Only 39% of patients with genetically verified mitochondrial disease had mitochondrial pathology in their muscle histology. In contrast, biomarkers were elevated in 62% of patients with genetically verified mitochondrial disease. Those with both biomarkers elevated had a muscle manifesting disorder and a defect affecting mitochondrial DNA expression. If at least one of the biomarkers was induced and the patient had a myopathic disease, a mitochondrial DNA expression disease was the cause with 94% probability. Among patients with biomarker analysis and muscle biopsy taken <12 months apart, a mitochondrial disorder would have been identified in 70% with analysis of FGF21 and GDF15 compared to 50% of patients whom could have been identified with muscle biopsy alone. Muscle findings were nondiagnostic in 72% (children) and 45% (adults). Induction of FGF21 and GDF15 suggest a mitochondrial etiology as an underlying cause of a muscle manifesting disease. Normal biomarker values do not, however, rule out a mitochondrial disorder, especially if the disease does not manifest in muscle. We suggest that FGF21 and GDF15 together should be first-line diagnostic investigations in mitochondrial disease complementing muscle biopsy

    Long-Term Efficacy, Safety, and Pharmacokinetics of Drisapersen in Duchenne Muscular Dystrophy: Results from an Open-Label Extension Study

    No full text
    <div><p>Background</p><p>Drisapersen induces exon 51 skipping during dystrophin pre-mRNA splicing and allows synthesis of partially functional dystrophin in Duchenne muscular dystrophy (DMD) patients with amenable mutations.</p><p>Methods</p><p>This 188-week open-label extension of the dose-escalation study assessed the long-term efficacy, safety, and pharmacokinetics of drisapersen (PRO051/GSK2402968), 6 mg/kg subcutaneously, in 12 DMD subjects. Dosing was once weekly for 72 weeks. All subjects had a planned treatment interruption (weeks 73–80), followed by intermittent dosing (weeks 81–188).</p><p>Results</p><p>Subjects received a median (range) total dose of 5.93 (5.10 to 6.02) mg/kg drisapersen. After 177 weeks (last efficacy assessment), median (mean [SD]) six-minute walk distance (6MWD) improved by 8 (-24.5 [161]) meters for the 10 subjects able to complete the 6MWD at baseline (mean age [SD]: 9.5 [1.9] years). These statistics include 2 subjects unable to complete the test at later visits and who scored “zero”. When only the 8 ambulant subjects at week 177 were taken into account, a median (mean [SD]) increase of 64 (33 [121]) meters in 6MWD was observed. Of 7 subjects walking ≥330 m at extension baseline, 5 walked farther at week 177. Of 3 subjects walking <330 m, 2 lost ambulation, while 1 declined overall but walked farther at some visits. Over the 188 weeks, the most common adverse events were injection-site reactions, raised urinary α<sub>1</sub>-microglobulin and proteinuria. Dystrophin expression was detected in all muscle biopsies obtained at week 68 or 72.</p><p>Conclusion</p><p>Drisapersen was generally well tolerated over 188 weeks. Possible renal effects, thrombocytopenia and injection-site reactions warrant continued monitoring. Improvements in the 6MWD at 12 weeks were sustained after 3.4 years of dosing for most patients. For a small, uncontrolled study, the outcomes are encouraging, as natural history studies would anticipate a decline of over 100 meters over a 3-year period in a comparable cohort.</p><p>Trial Registration</p><p>ClinicalTrials.gov <a href="https://clinicaltrials.gov/ct2/show/NCT01910649?term=NCT01910649&rank=1" target="_blank">NCT01910649</a></p></div

    Percent-predicted normal 6MWD, as calculated using the Geiger equation [23,24].

    No full text
    <p>Percent-predicted normal 6MWD, as calculated using the Geiger equation [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0161955#pone.0161955.ref023" target="_blank">23</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0161955#pone.0161955.ref024" target="_blank">24</a>].</p
    corecore