64 research outputs found

    Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme

    Full text link
    Spin-polarised radio-frequency currents, whose frequency is equal to that of the gyrotropic mode, will cause an excitation of the core of a magnetic vortex confined in a magnetic tunnel junction. When the excitation radius of the vortex core is greater than that of the junction radius, vortex core expulsion is observed, leading to a large change in resistance, as the layer enters a predominantly uniform magnetisation state. Unlike the conventional spin-torque diode effect, this highly tunable resonant effect will generate a voltage which does not decrease as a function of rf power, and has the potential to form the basis of a new generation of tunable nanoscale radio-frequency detectors

    Evolution in the split-peak structure across the Peak Effect region in single crystals of 2H2H-NbSe2_2

    Full text link
    We have explored the presence of a two-peak feature spanning the peak effect (PE) region in the ac susceptibility data and the magnetization hysteresis measurements over a wide field-temperature regime in few weakly pinned single crystals of 2H2H-NbSe2_2, which display reentrant characteristic in the PE curve near TcT_c(0). We believe that the two-peak feature evolves into distinct second magnetization peak anomaly well separated from the PE with gradual enhancement in the quenched random pinning.Comment: 9 figure

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Room-temperature spin-orbit torque in NiMnSb

    Get PDF
    Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin–orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin–orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin–orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin–orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin–orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.University of WürzburgThis is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nphys377

    Time-resolved detection of spin-transfer-driven ferromagnetic resonance and spin torque measurement in magnetic tunnel junctions

    Full text link
    Several experimental techniques have been introduced in recent years in attempts to measure spin transfer torque in magnetic tunnel junctions (MTJs). The dependence of spin torque on bias is important for understanding fundamental spin physics in magnetic devices and for applications. However, previous techniques have provided only indirect measures of the torque and their results to date for the bias dependence are qualitatively and quantitatively inconsistent. Here we demonstrate that spin torque in MTJs can be measured directly by using time-domain techniques to detect resonant magnetic precession in response to an oscillating spin torque. The technique is accurate in the high-bias regime relevant for applications, and because it detects directly small-angle linear-response magnetic dynamics caused by spin torque it is relatively immune to artifacts affecting competing techniques. At high bias we find that the spin torque vector differs markedly from the simple lowest-order Taylor series approximations commonly assumed.Comment: 29 pages, 5 figures including supplementary materia

    An antidamping spin–orbit torque originating from the Berry curvature

    Get PDF
    Magnetization switching at the interface between ferromagnetic and paramagnetic metals, controlled by current-induced torques, could be exploited in magnetic memory technologies. Compelling questions arise regarding the role played in the switching by the spin Hall effect in the paramagnet and by the spin–orbit torque originating from the broken inversion symmetry at the interface. Of particular importance are the antidamping components of these current-induced torques acting against the equilibrium-restoring Gilbert damping of the magnetization dynamics. Here, we report the observation of an antidamping spin–orbit torque that stems from the Berry curvature, in analogy to the origin of the intrinsic spin Hall effect. We chose the ferromagnetic semiconductor (Ga,Mn)As as a material system because its crystal inversion asymmetry allows us to measure bare ferromagnetic films, rather than ferromagnetic paramagnetic heterostructures,eliminating by design any spin Hall effect contribution. We provide an intuitive picture of the Berry curvature origin of this antidamping spin–orbit torque as well as its microscopic modelling. We expect the Berry curvature spin–orbit torque to be of comparable strength to the spin-Hall effect-driven antidamping torque in ferromagnets interfaced with paramagnets with strong intrinsic spin Hall effect

    Invasive Salmonella Typhimurium ST313 with naturally attenuated flagellin elicits reduced inflammation and replicates within macrophages.

    No full text
    Invasive non-typhoidal Salmonella (iNTS) are an important cause of septicemia in children under the age of five years in sub-Saharan Africa. A novel genotype of Salmonella enterica subsp. enterica serovar Typhimurium (multi-locus sequence type [ST] 313) circulating in this geographic region is genetically different to from S. Typhimurium ST19 strains that are common throughout the rest of the world. S. Typhimurium ST313 strains have acquired pseudogenes and genetic deletions and appear to be evolving to become more like the typhoidal serovars S. Typhi and S. Paratyphi A. Epidemiological and clinical data show that S. Typhimurium ST313 strains are clinically associated with invasive systemic disease (bacteremia, septicemia, meningitis) rather than with gastroenteritis. The current work summarizes investigations of the broad hypothesis that S. Typhimurium ST313 isolates from Mali, West Africa, will behave differently from ST19 isolates in various in vitro assays. Here, we show that strains of the ST313 genotype are phagocytosed more efficiently and are highly resistant to killing by macrophage cell lines and primary mouse and human macrophages compared to ST19 strains. S. Typhimurium ST313 strains survived and replicated within different macrophages. Infection of macrophages with S. Typhimurium ST19 strains resulted in increased apoptosis and higher production of proinflammatory cytokines, as measured by gene expression and protein production, compared to S. Typhimurium ST313 strains. This difference in proinflammatory cytokine production and cell death between S. Typhimurium ST19 and ST313 strains could be explained, in part, by an increased production of flagellin by ST19 strains. These observations provide further evidence that S. Typhimurium ST313 strains are phenotypically different to ST19 strains and instead share similar pathogenic characteristics with typhoidal Salmonella serovars

    Toxicity assay to determine the effect of <i>S</i>. Typhimurium ST313 and ST19 on THP-1 macrophages.

    No full text
    <p>Human THP-1 cells were infected with <i>S</i>. Typhimurium I77 (ST19) or <i>S</i>. Typhimurium D65 (ST313) at a MOI of 10∶1 or left uninfected. Guava ViaCount was used to determine the number of viable, mid-apoptotic and apoptotic cells 24 h p.i. Results are expressed as mean ± SD from 3 independent experiments. ** represents P<0.01.</p
    corecore