164 research outputs found

    Modeling Affect Dynamics:State of the Art and Future Challenges

    Get PDF
    The current article aims to provide an up-to-date synopsis of available techniques to study affect dynamics using intensive longitudinal data (ILD). We do so by introducing the following eight dichotomies that help elucidate what kind of data one has, what process aspects are of interest, and what research questions are being considered: (1) single- versus multiple-person data; (2) univariate versus multivariate models; (3) stationary versus nonstationary models; (4) linear versus nonlinear models; (5) discrete time versus continuous time models; (6) discrete versus continuous variables; (7) time versus frequency domain; and (8) modeling the process versus computing descriptives. In addition, we discuss what we believe to be the most urging future challenges regarding the modeling of affect dynamics

    Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model

    Get PDF
    Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system

    Cortico-brainstem mechanisms of biased perceptual decision-making in the context of pain

    Get PDF
    Perceptual decision-making is commonly studied using stimuli with different physical properties but of comparable affective value. Here, we investigate neural processes underlying human perceptual decisions in the affectively rich domain of pain using a drift-diffusion model in combination with a probabilistic cueing paradigm. This allowed us to characterize a novel role for the dorsolateral prefrontal cortex (DLPFC), whose anticipatory responses reflecting a decision bias were dependent on the affective value of the stimulus. During intense noxious stimulation, these model-based anticipatory DLPFC responses were linked to an engagement of the periaqueductal gray (PAG), a midbrain region implicated in defensive responses including analgesia. Complementing these findings on biased decision-making, the model parameter reflecting sensory processing predicted subcortical responses (in amygdala and PAG) when expectations were violated. Our findings highlight the importance of taking a broader perspective on perceptual decisions and link decisions about pain with subcortical circuitry implicated in endogenous pain modulation

    m-Path:An easy-to-use and highly tailorable platform for ecological momentary assessment and intervention in behavioral research and clinical practice

    Get PDF
    In this paper, we present m-Path (www.m-Path.io), an online platform that provides an easy-to-use and highly tailorable framework for implementing smartphone-based ecological momentary assessment (EMA) and intervention (EMI) in both research and clinical practice in the context of blended care. Because real-time monitoring and intervention in people's everyday lives have unparalleled benefits compared to traditional data collection techniques (e.g., retrospective surveys or lab-based experiments), EMA and EMI have become popular in recent years. Although a surge in the use of these methods has led to a myriad of EMA and EMI applications, many existing platforms only focus on a single aspect of daily life data collection (e.g., assessment vs. intervention, active self-report vs. passive mobile sensing, research-dedicated vs. clinically-oriented tools). With m-Path, we aim to integrate all of these facets into a single platform, as it is exactly this all-in-one approach that fosters the clinical utility of accumulated scientific knowledge. To this end, we offer a comprehensive platform to set up complex and highly adjustable EMA and EMI designs with advanced functionalities, using an intuitive point-and click web interface that is accessible for researchers and clinicians with limited programming skills. We discuss the strengths of daily life data collection and intervention in general and m-Path in particular. We describe the regular workflow to set up an EMA or EMI design within the m-Path framework, and summarize both the basic functionalities and more advanced features of our software

    Fingerprint resampling: A generic method for efficient resampling

    Get PDF
    Analysis and Stochastic

    Analyzing subcomponents of affective dysregulation in borderline personality disorder in comparison to other clinical groups using multiple e-diary datasets

    Get PDF
    Background: Affective dysregulation is widely regarded as being the core problem in patients with borderline personality disorder (BPD). Moreover, BPD is the disorder mainly associated with affective dysregulation. However, the empirical confirmation of the specificity of affective dysregulation for BPD is still pending. We used a validated approach from basic affective science that allows for simultaneously analyzing three interdependent components of affective dysregulation that are disturbed in patients with BPD: homebase, variability, and attractor strength (return to baseline). Methods: We applied two types of multilevel models on two e-diary datasets to investigate group differences regarding three subcomponents between BPD patients (n =43; n =51) and patients with posttraumatic stress disorder (PTSD; n= 28) and those with bulimia nervosa (BN; n= 20) as clinical control groups in dataset 1, and patients with panic disorder (PD; n= 26) and those with major depression (MD; n =25) as clinical control groups in dataset 2. In addition, healthy controls (n= 28; n= 40) were included in the analyses. In both studies, e-diaries were used to repeatedly collect data about affective experiences during participants’ daily lives. In study 1 a high-frequency sampling strategy with assessments in 15 min-intervals over 24 h was applied, whereas the assessments occurred every waking hour over 48 h in study 2. The local ethics committees approved both studies, and all participants provided written informed consent. Results: In contradiction to our hypotheses, BPD patients did not consistently show altered affective dysregulation compared to the clinical patient groups. The only differences in affective dynamics in BPD patients emerged with regard to one of three subcomponents, affective homebase. However, these results were not even consistent. Conversely, comparing the patients to healthy controls revealed a pattern of more negative affective homebases, higher levels of affective variability, and (partially) reduced returns to baseline in the patient groups. Conclusions: Our results indicate that affective dysregulation constitutes a transdiagnostic mechanism that manifests in similar ways in several different mental disorders. We point out promising prospects that might help to elucidate the common and distinctive mechanisms that underlie several different disorders and that should be addressed in future studies
    • …
    corecore