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Fingerprint resampling: A generic 
method for efficient resampling
Merijn Mestdagh1, Stijn Verdonck1, Kevin Duisters1,2 & Francis Tuerlinckx1

In resampling methods, such as bootstrapping or cross validation, a very similar computational 
problem (usually an optimization procedure) is solved over and over again for a set of very similar 
data sets. If it is computationally burdensome to solve this computational problem once, the whole 
resampling method can become unfeasible. However, because the computational problems and 
data sets are so similar, the speed of the resampling method may be increased by taking advantage 
of these similarities in method and data. As a generic solution, we propose to learn the relation 
between the resampled data sets and their corresponding optima. Using this learned knowledge, 
we are then able to predict the optima associated with new resampled data sets. First, these 
predicted optima are used as starting values for the optimization process. Once the predictions 
become accurate enough, the optimization process may even be omitted completely, thereby greatly 
decreasing the computational burden. The suggested method is validated using two simple problems 
(where the results can be verified analytically) and two real-life problems (i.e., the bootstrap of a 
mixed model and a generalized extreme value distribution). The proposed method led on average to 
a tenfold increase in speed of the resampling method.

Resampling methods refer to a variety of different procedures in which a Monte Carlo method is used 
to create a large number of resampled versions of the original data. Well known examples include boot-
strapping1, permutation tests and various sorts of cross-validation. Commonly, resampling methods are 
used to assess the uncertainty of an estimator, to estimate tail area probabilities for hypothesis testing, to 
assess prediction errors or to do model selection2.

Broadly speaking, all resampling methods follow the same general scheme. First, the original data 
set is resampled multiple times. Resampling can be done directly on the original data set or through a 
statistical model that is first fitted to the data. In a next step, a model is estimated for the resampled data. 
Finally, the results of the estimated models are combined to calculate, for example, the uncertainty of an 
estimator of interest (e.g., confidence intervals and predictive validity obtained using bootstrapping and 
cross-validation, respectively).

A major reason for the popularity of these resampling methods stems from their flexibility3–7. They 
allow a researcher to compute uncertainty assessments or hypothesis tests in situations where no ana-
lytical solution is available or where some assumptions of the analytical method are not justified (e.g., 
deviations from normality).

Unfortunately, even in these times of abundant computer power, a main disadvantage of these res-
ampling methods is the computational burden. This computational burden is specifically present when 
for every regenerated data set, an iterative method is needed to maximize a likelihood or to minimize a 
squared error. If such an optimization is costly, the resampling method may become practically unfeasible.

As an illustration of the problem, one may think of the calculation of a bootstrap based confidence 
interval (CI) for a variance component in a linear mixed model8. Linear mixed models are commonly 
used in the life sciences9–13. More specifically, we consider a data set and model described in Samuh et al14.  
A sample of 129 depressed individuals is measured 71 times on average (in total there are about 9115 time 
points) regarding their momentary sadness. The design is unbalanced because not all individuals have 
the same number of measurements. A longitudinal linear mixed model (see Verbeke and Molenberghs8) 
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with the previous emotional state as a predictor is fitted to the data. Both intercept and slope are assumed 
to vary randomly across patients.

Our prime interest for these data is in the variance components (i.e., the estimates of the between 
patient variances regarding intercept and slope). Current analytical procedures for computing such a 
variance component CI are not accurate enough and therefore a bootstrap based CI is pursued as an 
alternative15–17. If we aim at 2000 bootstrap replications, then repeatedly fitting the linear mixed model 
would take more than four hours using one core on an Intel Core i7-3770 with 3.4 GHz computer. Such 
computation times may prohibit the routine use of the bootstrap by applied researchers.

Together with the rise in popularity of resampling methods, there have been continued efforts to alle-
viate the computational burden of these methods. For example, Efron and Bradley proposed to decrease 
the number of bootstraps in favorable cases18. They improved the post processing of the bootstrap esti-
mates, increasing the accuracy for the same number of bootstrap estimates computed. However, most 
efforts are concentrated on decreasing the computational burden of the model fit on a single resampled 
data set by, for example, reducing the number of iterations in the optimization method9–21. Another way 
to speed up the resampling process is to split the estimating function into smaller, more simple parts. 
Bootstrapping these parts can lead to faster and more accurate bootstrapping22. More recent improve-
ments focus on tailor-made solutions for specific problems23–25. Unfortunately, none of these methods 
are generic and easily convertible to other situations.

In this paper, we will propose a generic procedure to decrease the computational burden. As a result, 
resampling methods can be used for problems that are very time-consuming because an iterative opti-
mization is needed. The key idea of our method is that for all resampled data, a similar task has to be 
performed because the same model has to be fitted to very similar data. Consequently, when this task is 
performed repeatedly, we may learn from the past and use this knowledge for future problems. This core 
idea is very simple and can be applied to any resampling technique.

More specifically, the optimization algorithm needs an initial (or starting) value for each resampled 
data set. By improving the quality of this initial value, the optimization problem can be significantly 
speeded up because the closer the initial value to the real optimum, the less iterations the algorithm 
needs to converge. The method we propose will use information from previous fits to considerably 
improve the starting points for subsequent problems. In addition, if the initial value is accurate enough, 
the optimization process may even be omitted.

Results
An optimal choice of the starting values. Two simple examples (involving the exponential distri-
bution and a simple linear regression) will be used to motivate and introduce our method on how to 
choose the starting values of numerical optimization algorithms in a resampling context optimally. In 
both examples, there are two artificial aspects that make them simple examples. First, we will make use 
of the bootstrap in both situations, but the simple and well-understood properties of these models make 
the use of the bootstrap unnecessary. Second, our proposed method will only provide an advantage if 
the estimation process makes use of a numerical optimization algorithm. However, for both examples, 
closed-form estimators are available. Therefore, we will nevertheless make use of an iterative optimization 
algorithm and act as if the analytical solution is not known. An advantage of working with such simple 
models with available closed-form expressions is that some results can be checked analytically.

In a first example, we will bootstrap an exponential distribution. The loglikelihood of such an expo-
nential distribution, with data set = ( ,..., )X x xn1  is given by
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The resulting optimum is the sample average, x. The analytical solution will only be used to verify our 
findings and to provide a better insight in the workings of our method. Let us now simulate a data set, 
denoted as the original data X0, with θ =  2, θ = = .ˆ x 2 10 0  and n =  100. For the bootstrapping process, 
the data sets are non-parametrically resampled B =  200 times ( , , ,..., )X X X Xb1 2 200 . The loglikelihoods of 
the original data set and 200 resampled data sets are shown in Fig. 1a.

For every resampled data set b, a loglikelihood needs to be optimized to find its maximum, θ̂b. In an 
iterative estimation procedure, this means that for every resampled data set b, we also need a starting 
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Figure 1. Choosing optimal starting values for an exponential model. In (a) the loglikelihood functions 
of the exponential distribution for the original data set and 200 resampled data sets are shown. The optima 
(θ̂) of all these loglikelihood functions need to be found using an iterative optimization proces. Each 
optimization needs a starting value θ. In (b–e), the horizontal axis shows the resampled data set number b 
and the vertical axis the initial errors on the starting values θ θ= −

^Eb b b. In (b), option 1 is used to choose 
this starting value (θ = 1). All initial errors are negative. (c) shows that this bias of the starting values can be 
avoided by using option 2. The original optimum, θ̂0 is more central compared to the other optima. In (d) it 
is shown that this error decreases further when the nearest neighbor variant of option 3 is used. In (e), 
where the interpolation variant of option 3 is used, the error almost vanishes. Using first order derivatives as 
fingerprint, the optima are easy to predict. In (f) it is shown that there is a linear relation between 
fingerprints  ,1 1 to  ,1 200 and optima θ̂1 to θ̂200.
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value, θb. (In the remainder of the paper, we will denote starting values by a tilde.) The closer the starting 
value to the optimum, the faster the optimization algorithm will converge to the optimum. The difference 
between the starting value and the optimum for a bootstrap sample, θ θ−

ˆ
b b, will be called the initial 

error and denoted as Eb.
Let us now consider in turn three options we have when choosing these starting values for the B 

bootstrap samples.

Option 1: A naive starting value. In an extreme situation, the researcher barely knows anything about 
the problem at hand and chooses a common naive starting value, for example, θ = 1b  (for all b). The initial 
error corresponding with this naive starting value, θ θ θ= − = −

ˆ ˆE 1b b b b, is shown in Fig.  1b for all 
resampled data sets. In this case, the starting value is clearly an underestimation of the optimum, and 
the error is always negative.

Option 2: The original optimum θ̂0 as a starting point. An easy improvement can be made at this point 
by taking the original optimum as a starting value:

θ θ∀ = . ( )
ˆb: 4b 0

The original optimum, θ̂0, is the optimum that belongs to the fit of the original data set X0 and is 
typically computed before the resampling process anyway. All the subsequent regenerated data sets, Xb, 
are related to this original data set. The original data set can be considered central. As a consequence, it 
is likely that also θ̂0 is central to the optima of the resampled data sets, as is the case in Fig. 1a. This leads 
to a much less biased starting value (Fig. 1c) and a faster optimization process (Fig. 2a).

Figure 2. Number of function evaluations per bootstrap for the two simple problems. For both simple 
problems, the exponential distribution and the linear regression, =M 99 synthetic data sets are simulated. For 
each simulated data set, =B 1000 bootstrap data sets are generated. For each bootstrap sample, the optimal 
parameter value is computed through the iterative Nelder-Mead algorithm. The horizontal axis shows the 
resampled data set number and the vertical the number of function evaluations needed by the Nelder-Mead 
algorithm, averaged over the 99 synthetic data sets. Option 1 (naive starting value) and option 2 (original 
optimum as starting value) use the same starting value for every resampled data set. The optimization speed 
does not change. Both panels also show two interpolation variants of option 3. Once with first order 
derivatives (F1 variant) and once with first and second order derivatives (F2 variant). In (a) the results for 
the exponential distribution are shown. The linear relation between the first fingerprint and the optimum 
(Fig. 9) is easily learned, instantly leading to fast optimizations in variants F1 and F2. In (b) the results for 
the linear regression are shown. Only when also the second derivative is included in the fingerprint (variant 
F2), the mean number of function evaluations decreases considerably, relative to option 1 and 2. The 
decrease in the number of function evaluations is not as fast as in the exponential distribution. The reason is 
that the relation is nonlinear and more difficult to learn. When more and more resampled data sets are 
processed, the predictions improve and the number of function evaluations needed per optimization 
decreases.
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Option 3: Learn from the previously resampled data sets. The starting value can be improved upon fur-
ther. The same function (Eq. 1), based on very similar data sets (all resampled from X0), needs to be 
optimized over and over again. As a result, all the loglikelihoods look very similar, as shown in Fig. 1a.

The core of our method lies in the fact that we try to learn from the past. When one needs to find 
the estimate θ̂b for resampled data set Xb, the optima belonging to all previous data sets, θ̂1 to θ −ˆ

b 1, are 
already found. If b goes to infinity, the optimum of the same data set will already be computed. A better 
starting value cannot be wished for.

In the more realistic setting of a finite b, Xb will not be in the set of ,..., −X X{ }b1 1 . There will however 
be some data sets that are more similar to Xb than others. One can search now for the most similar data 
set. Assume X j is the most similar data set to Xb. The optimum θ̂ j of this similar data set will probably 
be a good prediction of the optimum belonging to data set Xb. We can take this prediction as a starting 
value, θ θ=

ˆ
b j. One can call this a nearest neighbor prediction:

( )θ θ= ⇔ < | ∀ < ( , ) ≤ ( , ) , ( )
ˆ j b k b d X X d X X: 5b j j b k b

with d(Xj, Xb) a distance between data sets X j and Xb. If b gets larger, more and more resampled data 
sets are fitted leading to a larger pool of previous data sets to choose from. The chances of finding a very 
similar data set become larger, leading to better starting values.

Although intuitive to grasp, measuring the distance between raw data sets is often not very easy. A 
better strategy is to first summarize the resampled data sets into properties (or statistics) that carry 
information about the optima. Such summary statistics will be called fingerprints. A fingerprint   is a 
statistic or function that takes a resampled data set as input. The idea is that these statistics provide direct 
information on the optimum that we look for. In general, we propose to use derivative-based finger-
prints. In this exponential distribution example, the first derivative of the loglikelihood for the resampled 
data set evaluated in the original optimum will suffice. Formally, the fingerprint for the resampled data 
b is defined as:
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with xb being the sample average of resampled data set Xb. Here the first index of  ,b1  refers to the fact 
that the first order derivative is used.

Once the derivative-based fingerprints ℱ are computed, we can just take the squared Euclidean dis-
tance between them to create a distance measure between the resampled data sets: 

 ( , ) = ( − ), ,d X Xj b j b1 1
2. In Fig.  1d the initial errors Eb in the starting values computed using 

Equations 5 and 6 are shown. It is shown that the errors become on average considerably smaller when 
the number of fitted bootstrap samples increases.

A disadvantage of the nearest neighbor approach is that when a new fingerprint  ,b1  becomes avail-
able, only the nearest neighbors to this new fingerprint determine the newly assigned starting point θb. 
However, we can improve on this practice by using a clever interpolation method. We want to model the 
relation between the already computed fingerprints  ( = ,…, − ), j b1 1j1  and their corresponding optima 
θ ( = ,…, − )ˆ j b1 1j . This relation can then be used to make a prediction and to associate a good starting 
point θb to the new fingerprint  ,b1 .

Because we do not know much about the relation we want to model in general, we choose an inter-
polation method that is capable of capturing nonlinear relations. Examples of such methods are least 
squares support vector machines (LS-SVM)26,27 or multivariate adaptive regression splines (MARS)28. We 
will show only the results obtained by using LS-SVM, however similar results were obtained by using 
MARS.

The goal of the nonlinear interpolators is to learn the relation  θf :  based on the couples  θ( , ),
ˆ

1 1 1  
to  θ( , ), − −

ˆ
b b1 1 1 . The estimated relation can be denoted as 

−f̂ b1: 1 (where the index indicates that the first 
−b 1 data sets are used). In a next step, the optimum of resampled data set Xb can be predicted:

θ = ( ). ( )− ,
ˆ f̂ 7b b b

pred
1: 1 1

The predicted optimum will then serve as the improved starting point for the resampled data Xb:

θ θ= . ( )
ˆ 8b b

pred

Once again, the predictions will become better when the pool of couples of fingerprints and optima 
to learn the relation f  from, grows larger. The errors of the starting values computed with this variant, 
using LS-SVM, are shown in Fig. 1e. This variant, using the interpolation method in combination with 
first order derivatives for the fingerprint will be called the F1 variant. In the remainder of this paper, we 
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will not discuss the nearest neighbor variant anymore and directly consider this interpolation method as 
it gives much better results.

In fact, after two bootstrap samples, the predicted optimum actually coincides with the true optimum 
for the resampled data set. Hence, the interpolation method can, based on the fingerprint, almost exactly 
predict the optimum. This is not a surprise because in this exceptionally easy toy example, there exists 
an exact functional relation between the fingerprint and optimum. This can be seen when one combines 
Equation 6 and the analytical solution of the maximum likelihood estimation (Eq. 3):

θ
θ

θ= = + . ( ),
ˆ

ˆ
ˆx

n 9b b b
0
2

1 0

Because of the linearity of this relation, only a set of two training points (Fig. 1e) is enough to create a 
model that delivers almost perfect starting values, instantly leading to fast optimizations (Fig. 2a). The 
relation between the fingerprints and the optima for all the resampled data sets is shown in Fig. 1f.

The options to choose a starting value, described in the previous paragraphs, are generic and can 
easily be used for other estimation problems. In a second example, they are applied to a linear regression 
without intercept and with known variance. In Figs 3 and 2b similar results are shown for options 1 and 
2. However, for option 3, a one dimensional fingerprint, using only the first order derivative of the 
loglikelihood, is not sufficient anymore. The accuracy of the starting values improves if also the second 
order derivative is used, called the F 2 variant. The starting values are now predicted using a two dimen-
sional fingerprint:

 θ = ( , ). ( )− , ,
ˆ f̂ 10b b b b

pred
1: 1 1 2

As this new relation is nonlinear (Fig. 3f), it takes more bootstrap samples to be learned, which leads to 
a more gradual decrease in function evaluations, as shown in Fig. 2b.

Bootstrap of a mixed model. In the previous paragraphs, we studied our methods by evaluating the 
number of function evaluations to find the optimum. However, the purpose of a resampling method such 
as the bootstrap is usually to compute an uncertainty measure (e.g., the standard error of an estimate 
or a confidence interval). In this result section, we will estimate the lower bound of a 95% confidence 
interval using the percentile bootstrap confidence interval method29.

We will apply this bootstrap on a linear mixed model, a model commonly used in the life sciences9–13. 
The bootstrap of a linear mixed model is of interest in a variety of areas14,30–34, as inference for its random 
effects is not straightforward15–17.

In this example we will use real-life data from Bringmann et al14. As stated in the introduction, 129 
depressed patients are measured repeatedly 10 times a day for 10 days using the experience sampling 
method regarding their momentary sadness35. As not all patients respond to every measurement, the data 
are unbalanced and consists of only 9115 time points. For each patient, sadness at timepoint t will be 
predicted by sadness at timepoint −t 1. Both the intercept and the slope are assumed to vary across 
patients. We will use the bootstrap with =B 2000 bootstrap iterations to estimate the . %2 5  percentile of 
the variance matrix of these random effects:

σ σ

σ σ
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The more bootstrap samples are processed, the higher the accuracy of this . %2 5  percentiles will 
become. However, more bootstrap iterations generally means more function evaluations to estimate the 
mixed model parameters. Hence, there is an intrinsic trade-off between speed (number of function eval-
uations) and accuracy. Next, we can study how the different options and variants of our method deal 
with this speed-accuracy trade-off. Option 1, taking naive starting values, will not be considered. All 
speed ups will be measured against option 2, taking the original optimum as starting value. Moreover, 
new variants will be introduced.

Option 4: Bypass the optimization altogether. In the previous section we showed how better starting 
values can increase the speed of the optimization process. The end result, the accuracy of the bootstrap, 
will be exactly the same for all these variations. The different starting values will lead to the same optima 
(assuming an optimization algorithm fit to find the global optimum). However, when the starting values 
become better and better, they can become practically indistinguishable from the real optima. Such 
accurate predictions of new optima make the optimization process superfluous for the associated 
re-sampled data sets. Skipping the optimization process will lead to an even larger speed increase. Several 
variants will be considered and they are denoted generically as F Pg p. The index g  means that partial 
derivatives of the loglikelihood function up to order g  are used for the fingerprint. Finite differences 
(using an extra number of function evaluations) are used to compute these derivatives. The number  
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Figure 3. Choosing optimal starting values for a linear regression. A linear regression data set with 
estimated slope (the original optimum), β = .ˆ 1 940 , is non-parametrically resampled =B 200 times. In this 
figure, the possible choices of the starting values for the optimization of the loglikelihood of these resample 
data sets are compared in (a–c) and (e). In all those panels the horizontal axis shows the resampled data set 
number b and the vertical axis the initial errors on the starting values θ θ= −

ˆEb b b. In (a), a naive starting 
value is chosen (β = 1b , option 1). All errors are negative. In (b), the original optimum is chosen as starting 
value (option 2) which removes the bias. In (c), the results of the interpolation variant of option 3, using a 
one dimensional fingerprint (first order derivative) are shown (variant F1). Eb further decreases, but not to 
machine precision. The reason is shown in (d): there is no unique relation between fingerprints  ,1 1 to 
 ,1 200 and optima β̂1 to β̂200. Data sets with the same fingerprint can result in different optima. In (e), the 
initial error Eb again decreases to zero. Here a two dimensional fingerprint,   = ,, ,{ }i i i1 2 , using the first 
and second-order of differentiation of the loglikelihood, is used (variant F2). This results in a unique, non-
linear relation between the fingerprints and the optima, as is seen in (f), showing fingerprints  ( , ), ,1 1 2 1  to 
 ( , ), ,1 200 2 200  versus optima β̂1 to β̂200.
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p refers to the ratio between the number of resampled data sets for which the optimization is bypassed 
compared to the number of resampled data sets for which the optimization algorithm is fully used. For 
example, if p is 3 and 200 bootstrap estimates are found with an optimization algorithm, then 600 pre-
dicted estimates are added to create a total set of 800 estimates. However, the total number of estimates 
never exceeds 2000 (as we have =B 2000 bootstrap iterations). So with the different values of p, maxi-
mum 200 predicted estimates will be added if already 1800 estimates are found with an optimization 
process. Note that the F Pg 0 variants are the same as the F g  variants of option 3, where the optimization 
is never bypassed. All different options and variants are summarized in Table 1.

The resulting speed up is shown in Fig. 4 and Table 2. The accuracy is shown against the number of 
function evaluations, i.e. the computational burden. Our method can acquire the same accuracy up to 
17 times as fast as the original optimum variant. More generally, for all the model parameters over all 
accuracies, approximately a tenfold speed up can be acquired. Using finite differences, more function 
evaluations are needed to generate a fingerprint that includes higher order derivatives. To get low quality 
predictions, a fingerprint of a lower order (F P p1 ) suffices. Therefore, it is faster to use only first order 
derivatives when only a low accuracy of the . %2 5  percentile is required. When a higher accuracy of this 
. %2 5  percentile is required, it can be better to use more informative fingerprints, with higher order 

derivatives, to create better predictions. For parameters σ ,D 1
2  and σ ,D 12 a fingerprint that uses only first 

order derivatives is enough. For a medium as well as high accuracy, the F P p1  variants outperform the 
F P p2  variants. However, for the third parameter, σ ,D 2

2 , F P p2  is a better option when a high accuracy is 
required. The better predictions now outweigh the extra cost of the larger fingerprint. It is also interesting 
to note that the F Pg 0 variant always gives the worst speed up. This means that, for this example, it is 
always advantageous to bypass the optimization process for at least a part of the resampled data sets.

Bootstrap of a generalized extreme value model. As a second real-life application we will apply 
fingerprint bootstrapping on a generalized extreme value (GEV) distribution model36. Also for the infer-
ence of GEV distributions, bootstrapping is a well-used tool37–40. Again we will estimate the lower bound 
of the 95% confidence interval of the parameters of the GEV distribution.

In De Kooy, The Netherlands, the maximum hourly mean windspeed was measured almost daily 
between 1906 and 201541. In total 39760 maxima where included. The GEV with one covariate (i.e., date 
of measurement) will be used to model these maxima. As explained in the method section, the estima-
tion of this model leads to a four dimensional optimization problem, with parameters ξ (shape) , σ 
(scale), α (intercept) and β (regression weight).

By counting the number of function evaluations needed to have a medium or high accuracy of the 
lower bound of the 95% confidence interval, we calculate the speed up of the fingerprint resampling 
method as shown in Table 3. The speed up of the F Pg p over the original optimum variation is even bigger 
as with the mixed model. The reason is that for the GEV distribution, using only the first derivatives of 
the likelihood as fingerprint, leads to sufficiently good prediction accuracies. Therefore, the F P p1  variants 
can be used for the medium as well as the high accuracy. As the number of function evaluations needed 
to create the fingerprints of these F P p1  variants is significantly lower, the speed up is bigger. To achieve 

Option Name Abbreviations Short explanation

1 Naive starting value An arbitrary starting value.

2 Original optimum Use the optimum of the original data set as 
starting value.

3
Learn from the 
previously resampled 
data sets

F g  or F Pg 0

Use previous information to predict future 
optima. Use these predictions as starting 
values. Fingerprints are used to summarize 
previous information. The index g  means 
that partial derivatives of the loglikelihood 
function up to order g  are used to construct 
the fingerprint.

4 Bypassing the 
optimization altogether F Pg p

Use previous information to predict future 
optima. Use these predicted optima in the 
resampling method. Fingerprints are used 
to summarize previous information. The 
index g means that partial derivatives of 
the loglikelihood function up to order g 
are used to construct the fingerprint. The 
number p refers to the ratio between the 
number of resampled data sets for which the 
optimization is bypassed compared to the 
number of resampled data sets for which the 
optimization algorithm is fully used.

Table 1.  Overview of all the variants.
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Figure 4. Trade off between accuracy and speed for the bootstrap of a mixed model. =M 99 times, a 
mixed model is bootstrapped to compute the . %2 5  percentile of the random effect variance parameters σ ,D 1

2 , 
σ ,D 12 and σ ,D 2

2 . Each bootstrap has =B 2000 bootstrap iterations. On each panel, the error of this . %2 5  
percentile averaged over the M bootstrap processes, measured as described in the method section, is shown 
on the vertical axis. The average speed, measured in number of function evaluations, is shown on the 
horizontal axis. On the left panels (in (a), (c) and (e)), the results for variants F P p1  are shown, using only 
first order derivatives for the fingerprints. On the right panels (in (b), (d) and (f)), derivatives up to order 
two are used. In (a) and (b), the bootstrap is applied on the variance parameter of the random intercept σ ,D 1

2 . 
In (e) and (f), the bootstrap is applied on the variance parameter of the random slope σ ,D 2

2 . In (c) and (d) 
the bootstrap is applied on the covariance parameter, σ ,D 12, of these random effects. The dotted lines show a 
high accuracy (approximately the lowest error achieved by the original optimum variant) and a medium 
accuracy (approximately twice this error), as used in Table 2. More function evaluations always lead to a 
better accuracy (lower error) of the . %2 5  percentiles. It is shown that the various F Pg p methods reach the 
same accuracy much faster compared to the original optimum variant.
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a high accuracy in the lower bound of the 95% confidence interval, a speed up of about 25 is acquired 
for all the variables for the F P1 1000 variants. For the F P2 1000 variants again a speed up of about 10 is 
reached. For the medium accuracies the F P p1  variants lead to speed ups around 10. Again, the F P p2  
variants do not perform very well when only a medium accuracy is needed. Too much time is needed to 
compute the detailed fingerprints, while only a medium accuracy is required.

Effect of parallelization on the speed up. Resampling methods earn part of their popularity by the 
fact they can be computed easily in parallel. Note that this parallel computing is no problem for our 
speed up. Only if literally every resampled dataset is handled simultaneously on a different computational 
entity, our speed increase will vanish. As long as parts of the resampling method stay serial, one can learn 
from previous information and consequently enjoy a speed increase. This is clearly shown in Fig. 5 for 
the GEV example. Here we show the speed up factor of the F P1 1000 variant while reaching a high accu-
racy. When everything is run on 1 core, we have a speed up of about 25 for every parameter. When more 
and more cores are used, the speed up decreases. When 2000 cores are used, every core computes one 
bootstrap. In this case, nothing can be learned from previous bootstrap computations. The speed up 
factor is now even below one, our method is slower as the normal method as the fingerprint resampling 
needs time to compute the fingerprints. If 5 cores are used (normal desktop computer), the method still 
enjoys 97% of the maximum speed up. When 20 cores are used, as is possible on a very high-end scien-
tific computer, the method can reach 90% of the maximum speed up. On a supercomputer, using 100 
cores, 47% of the speed up is preserved.

Discussion
The computational burden of resampling methods is oftentimes very large. Clearly, our fingerprint res-
ampling method can decrease the computational cost enormously. The starting point of the fingerprint 
resampling is that in a resampling scheme, similar computations are done over and over again for very 
similar data. Ignoring the previous calculations would be a waste of time. By interpolating between 
structured previous information, predicting future optima and omitting the optimization process, we 
succeed in increasing the speed approximately by a factor of 10. We have illustrated our method with 

Parameter σ ,D
2

1 σ ,D 12 σ ,D 2
2

Accuracy medium high medium high medium high

F P1 0 1.4 1.4 1.3 1.3 1.2 1.4

F P1 2 3.7 3.9 3.0 3.8 3.8 4.2

F P1 4 5.7 5.9 4.1 5.8 5.3 5.3

F P1 8 8.1 9.0 5.6 8.5 6.5 4.8

F P1 16 13 12 6.3 9.0 9.1 4.8

F P1 32 17 12 7.9 9.0 9.1 4.8

F P1 64 14 12 6.8 9.0 7.2 4.8

F P1 1000 6.0 12 4.2 9.0 4.3 4.8

F P2 0 1.4 1.7 1.4 1.7 1.3 1.8

F P2 2 3.0 3.7 2.9 3.7 2.8 3.9

F P2 4 4.1 5.0 3.8 4.9 3.7 5.3

F P2 8 5.4 6.5 4.9 7.0 4.8 7.1

F P2 16 6.8 7.9 4.5 8.6 5.6 8.7

F P2 32 4.9 9.0 3.5 8.5 3.7 6.3

F P2 64 2.9 8.9 2.0 8.1 2.2 6.3

F P2 1000 2.6 8.9 1.9 8.1 2.0 6.3

Table 2. Speed up results for the bootstrap of a mixed model. The table shows how much faster the 
different variants, F Pg p, get at a high accuracy (approximately the lowest error achieved by the original 
optimum variant) and a medium accuracy (approximately twice this error). These accuracies are shown in 
Fig. 4. Results are shown for the 3 parameters of D: σ ,D 1

2 , σ ,D 12 and σ ,D 2
2 . The F Pg p variants are up to 17 times 

faster as the original optimum variant. More generally, for all the model parameters over the majority of the 
accuracies, one can always find a F Pg p variant that leads to an 8 to 17 times faster bootstrap compared to 
the original optimum variant.
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two simple examples but also with two real-life applications. The bootstrap of the mixed model can now 
be finished during a coffee break (20 minutes), while it took half a work day before (more than 4 hours).

In this paper, our method is proposed in such a way that it can be used for a broad range of resam-
pling techniques. It can however easily be adapted to create a custom-made solution, increasing its effec-
tiveness for more specific problems. For example, if the α% percentile has to be computed with a 
bootstrap, one can actually use a more advantageous, but more specific scheme. One can predict which 
resampled data sets are included in the < 2α% interval with fingerprints and then use an optimization 

Parameter ξ σ α β

Accuracy medium high medium high medium high medium high

F P1 0 1.6 1.6 1.3 1.7 1.6 1.7 1.6 1.7

F P1 2 4.2 4.6 3.5 4.2 4.2 4.6 4.3 4.6

F P1 4 6.3 6.7 5.2 6.9 6.1 7 6.3 7

F P1 8 9.4 10 7.8 4.8 9 11 9.4 11

F P1 16 14 15 11 4.8 13 16 13 16

F P1 32 17 20 13 21 16 21 11 21

F P1 64 17 24 10 26 13 26 9.1 25

F P1 1000 9.4 24 5.7 28 8.9 25 6.4 25

F P2 0 1.9 2.3 1.5 2.4 2 2.4 1.9 2.4

F P2 2 3.7 4.6 2.7 4.8 3.7 4.8 3.5 4.9

F P2 4 4.6 5.7 3.4 6 4.6 6.2 4.4 6.2

F P2 8 5.9 7.2 4.3 7.7 5.7 7.7 5.6 7.8

F P2 16 6.5 8.5 3.9 9.3 6.1 9.1 4.7 9.3

F P2 32 4.3 9.3 2.6 10 4.1 10 3.2 11

F P2 64 3.4 9.6 2 11 3.2 10 2.5 10

F P2 1000 3.4 9.6 2 11 3.2 10 2.5 10

Table 3. Speed up results for the bootstrap of a GEV distribution. The table shows how much faster the 
different variants, F Pg p, get at a high accuracy (approximately the lowest error achieved by the original 
optimum variant) and a medium accuracy (approximately twice this error). Results are shown for the 4 
parameters of the GEV: ξ, σ, α and β. The F Pg p variants are up to 28 times faster as the original optimum 
variant. More generally, for all the model parameters over the majority of the accuracies, one can always find 
a F Pg p variant that leads to a 24 times faster bootstrap, compared to the original optimum variant.

Figure 5. Speed up and parallelization. The speed up of the F P1 1000 variant for the GEV distribution 
bootstrap, while reaching a high accuracy of the 95% confidence interval. The speed up, shown on the 
vertical axis is recalculated in case the method is run on multiple cores (horizontal axis), as explained in the 
method section. The speed up decreases for all the variables, ξ σ α, ,  and β of the GEV model if more cores 
are used. If less than 20 cores are used, more than 90% of the speed up is preserved.
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algorithm to find the real optima of these data sets. Using such a scheme, there is almost no error intro-
duced while retaining the computational advantage. In another example, a Newton-Raphson optimiza-
tion may be used. In such a case our method can easily be combined with k-step method of Davidson et 
al.21. One can first do a raw prediction of the optimum and can then refine this optimum with k optimi-
zation steps.

Resampling methods earn part of their popularity by the fact they can be computed easily in parallel. 
Note that this parallel computing is no problem for our speed up. Only if literally every resampled dataset 
is handled simultaneously on a different computational entity, our speed increase will vanish. As long as 
parts of the resampling method stay serial, one can learn from previous information and consequently 
enjoy a speed increase.

Not all aspects of our fingerprint resampling method are known at this point. We discuss two of them. 
First, in the simulations of this paper, we treated all problems as local optimization problems. Problems 
with multiple local minima form however an even greater computational problem. Therefore we will 
address this problem in future research. Fingerprints may still be able to point in the right direction of 
the optima. The relation between the fingerprints and optima may however become very unsmooth if 
different resampled data sets converge to other kinds of minima.

Second, the final goal of most resampling techniques is to compute an uncertainty measure. It stays 
however unclear how much error is introduced in this uncertainty measure by predicting a certain 
amount of optima (the ratio p). Most black-box techniques can provide reliable prediction errors of the 
optima themselves, but it can be hard to translate those prediction errors to errors in the uncertainty 
measure. On the other hand, this is not a problem specific to our method. When our speed up is not 
used whatsoever, one still has to assign the accuracy of the optimization for every resampled data set. 
Moreover, most resampling techniques introduce errors themselves. For example, one can never exactly 
know the error that is introduced by only computing a limited number of bootstraps29. Future research 
has to assess how all these errors are combined in the final uncertainty measure.

In conclusion, the fingerprint resampling method presented in this paper may fuel a more widespread 
use of resampling methods for complex models, which is now impossible or difficult because of the large 
computational burden.

Methods
A general description of the fingerprint resampling method. The basic idea of our method was 
explained in the result section. In this section we will develop our method in a more systematical fashion 
and indicate that it can be used more generally. For simplicity and completeness, we will consider the 
same four options as in the result section. However, only the third and fourth options are variants of our 
fingerprint resampling method.

Option 1: A naive starting value. Starting values are very important for optimization algorithms. They 
greatly define the speed in which the optimization process converges. In practice, when little information 
is known about the estimation process, naive starting values can be used (such as zero, one, the unity 
matrix, etc.). Such a naive starting value may be biased in the sense that it is systematically too high or 
too low compared to the real optima of the resampled data sets.

Option 2: The original optimum θ̂ 0 as a starting point. Taking the original optimum, θ̂0, may lead to a 
serious improvement over a naive starting value. As the original data set is central to the resampled data 
sets, the original optimum is likely to be central compared to the optima of the resampled data sets.

In the context of bootstrapping, the estimated bias on an estimator θ̂ is calculated by
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B1  the B optima of the resampled data sets29. Assuming this estimated bias is zero, one has
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This means that the original optimum is exactly the mean of the bootstrap optima. As a consequence, 
if the estimated bias of the estimator θ̂ is zero, the bias of θ̂0 as a predictor for the optima of the resampled 
data sets, is also zero. Therefore, when no further information is known about a problem, this original 
optimum is usually a reasonably good initial value for the subsequent optimizations and it is easy to 
implement. Using the original optimum as initial value is the most unsophisticated way of using previous 
information and it is not unique to our procedure19–21. It may already lead to a significant speed increase 
as shown in the result section.
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Option 3: Learn from the previously resampled data sets. In a next phase we will try to create better 
predictions for the optima of a new resampled data set making use of the previously resampled data and 
their corresponding optima. The better the prediction, the better the starting value and the less iterations 
the optimization procedure needs. For this prediction, we need two ingredients. A first ingredient is a 
concise summary of the data sets into statistics, called fingerprints, which can be linked to the optima 
of the resampled data. As a second ingredient, we need a method that can be used to learn the relation 
between the fingerprints and the optima of past data sets.

It is clear that, in order for our method to be efficient, both the fingerprints and the method to learn 
the relation should place a minimal computational burden on the whole resampling calculation. In the 
following parts, we will discuss both ingredients. To conclude, we discuss the link with the tuning param-
eters of the optimization algorithm.

Fingerprints. A fingerprint   is a scalar-valued or vector-valued function taking the resampled data 
set as input and produces one or more statistics as output. (In what follows, we will denote both the 
function as well as the function values with the term fingerprint.) To use such a fingerprint for the pre-
diction of the optimum, it must contain information on this optimum in a parsimonious manner. 
Obviously, there is a trade-off between compression rate and retained information. For instance, a trivial 
fingerprint would be the identity function, which maps a data set onto itself. Such a fingerprint obviously 
contains all the necessary information to locate the optimum. However, the relation between the finger-
prints and the optima is harder to derive when the fingerprint has a high dimensionality. Therefore, the 
identity function does not qualify as a good fingerprint because there is no information reduction.

The question then becomes what constitutes a good fingerprint. A derivative-based fingerprint is 
intuitively attractive. The rationale behind a derivative-based fingerprint is that the information con-
tained in derivatives (rate of change, curvature, etc.) in a point near a local optimum will tell us some-
thing about the location of the local optimum itself. In fact, the same kind of information is used in 
several optimization algorithms (e.g., steepest descent and Newton-Raphson). Therefore, we propose to 
use the derivatives of the objective function of the resampled data set, evaluated in the original optimum, 
as a fingerprint. Formally, this can be written as follows in the case of maximum likelihood estimation 
(for a particular resampled data set Xb):

 θ θ θ= ∇ ( ), ∇ ( ),...,∇ ( ) , ( )  

ˆ ˆ ˆX X X{ ; ; ; } 14b b b
g

b0
2

0 0

where g  is the order up to which the partial derivatives are used. (In case of least squares estimation 
 can be replaced by a sum of squares loss function S.) Of course, only the unique elements of the partial 
derivatives are used for the fingerprint: For example, if g  equals 2, these are the first order derivatives 
combined with the upper triangular elements of the Hessian matrix.

The derivatives can be approximated using finite differences if no analytical expressions exist. 
Obviously, a fingerprint using finite differences gives another incentive to reduce the dimensionality of 
the fingerprint. The higher the order of the derivative that needs to be estimated, the more function 
evaluations need to be computed. If k is the dimension of the optimum, one needs at least +k 1 function 
evaluations if =g 1 and + +( + )k 1k k 1

2
 function evaluations if =g 2 when finite differences are used.

A more fundamental reason to use derivative-based fingerprints is provided by Taylor’s theorem. If a 
function can be completely approximated by a Taylor series, all its information can be summarized in its 
derivatives evaluated in a certain point (e.g., the original optimum). Taking an infinite number of (par-
tial) derivatives ( → ∞g ) will then lead to a fingerprint with all information needed to uniquely define 
the optimum of its function. However, it is not necessary to describe the function one wants to optimize, 
nor its associated data set in statistics. Already in a very compact fingerprint a lot of information can be 
found about the optimum. As already mentioned, we propose to take a fingerprint with a dimension as 
low as possible, for modeling reasons. A limited number of derivatives, for example all first-order deriv-
atives in combination with all the unique elements of the Hessian matrix, will suffice in many cases.

It should be noted that a good fingerprint for one model does not necessarily generalize to a good 
one in another model. Sometimes, the likelihood cannot be evaluated in the original optimum for some 
data sets (see e.g., the example on the generalized extreme value distribution in the method section), 
making it impossible to compute the derivatives. Moreover, other ways of summarizing data may work 
at least as good as the derivative-based fingerprints. For example, computing the moments of a data set 
can also lead to good results. The sample average in the first example on the exponential distribution 
would obviously be a good fingerprint. Another possibility is to use summary statistics as they are used in 
approximate Bayesian computing. It is even possible to automatically generate such summary statistics42. 
In any case, what constitutes a good fingerprint is very problem specific. A covariance is decisive for 
the optimum in a regression while it cannot be computed in the data set of an exponential distribution. 
In situations where one has specific prior knowledge about the model, one can use this information to 
create a better model-specific fingerprint.

Predicting initial values based on fingerprints. Once the fingerprints are computed, the relation between 
the fingerprints and corresponding optima needs to be modeled. This relation will then be used to 
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predict the optima of subsequent resampled data sets. These predicted optima can then be used as start-
ing points.

The modeling of the relation between fingerprints and optima should satisfy three requirements. 
First, the modeling should be fast to calculate. The main reason for the prediction of the optima and 
using these as starting values is to create a significant speed up in the optimization procedure. However, 
this gain would be wasted in case of a slow modeling procedure. Second, the modeling should be able 
to describe a nonlinear relation. One cannot expect to only find strictly linear relations between the 
fingerprints and the optima. Already in the second simple example in the result section (on regression), 
the relation between optima and fingerprints is nonlinear. Third, we prefer to choose a method which 
excels in prediction. Both support vector machines (SVM43) and multivariate adaptive regression splines 
(MARS28) are well known for their generalization quality, which lead to good predictions. For the SVM, 
we propose to use a specific adaptation, the least squares support vector machines (LS-SVM), which lead 
to a much faster modeling compared to traditional SVM26. Note that these methods create a multi-input 
single-output model. This means that one needs one model for every dimension of the parameter that 
needs to be optimized. Because every dimension of the fingerprint initially has the same importance 
regarding the predictions, they are all standardized to train the black-box model.

The black-box methods are versatile, flexible and fast to compute. However, there are two specific 
problems that need to be addressed before the methods can be applied efficiently: constraints and 
extrapolation.

A first problem that needs to be solved is that some estimation problems call for a constrained opti-
mization. If a parameter is constrained, this can lead to a non-smooth fingerprint-optimum relation. As 
an illustration, consider Fig. 6 which can be compared to Fig. 3d in the result section. In both figures the 
fingerprints of a linear regression are plotted against optima. However, in Fig. 6, the optima are found 
with a constrained optimization (θ >^ 2). A situation is shown where the fingerprints below a value of 
-30 all result in a value of 2 of the parameter θ̂ . It can be seen that if the constraint is active, then for 
multiple resampled data sets, different fingerprints will all lead to the same optima, θ =^ 2. When at the 
same time, other resampled data sets lead to an inactive constraint, those resampled data sets will lead 
to a different fingerprint optima relation. There are now two different relations between the fingerprints 
and the optima. As a result, the relation between fingerprints and the optima is non-smooth. A black-box 
technique may have a hard time to learn such a non-smooth relation. For such cases, we propose the 
following solution. First, the black-box technique is only be estimated with the optima which are not on 
the boundary. Second, if the black-box technique makes a prediction that violates the constraint, the 
prediction is adapted to the constraint value.

A second problem is that we need to avoid extrapolation and the black-box methods can only be used 
to interpolate. However, because we learn sequentially from the resampled data, it is very likely that we 
encounter for resampled data Xb a fingerprint value b that lies outside the range of previously modeled 
data. To circumvent the extrapolation, we propose the following course of action during the initial phase. 
First, the fingerprints of all resampled data sets are computed. Then, for each dimension of the 

Figure 6. Fingerprints and optima of a constrained linear regression. A linear regression data set with 
estimated slope (the original optimum) β = .ˆ 2 050 , is non-parametrically resampled =B 200 times. All the 
optima are found with a constrained optimization, it is assumed that β ≥ˆ 2. The horizontal axis shows the 
fingerprints  ,1 1 to  ,1 200 and the vertical axis the optima β̂1 to β̂200.
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fingerprint, the minimum and maximum is searched. For the data sets corresponding with one or more 
extrema, the optima are computed first. In total, k2  data sets are prioritized, with k the dimension of the 
fingerprint. Second, a fair number of purely random data sets (usually, k) are added and also for these 
data sets the optima are computed. Postponing the use of the predictions for these initial data sets 
ensures a stable model over a broad range of fingerprints. To find the optimum, the original optimum is 
used as a starting value in this initial phase.

Other tuning parameters. The speed of most optimization algorithms can be improved and controlled 
by tuning parameters (e.g., the initial step length in line search algorithms for gradient-based methods; 
the size of the initial simplex in the Nelder-Mead method). It can also be useful to control these tuning 
parameters based on previous optimizations. Important in this control problem is that the uncertainty 
associated with the starting value should not be neglected. If the starting value is of high quality (because 
the predicted optimum and the true optimum are close together), the optimization algorithm should ini-
tially only search for an optimum in a small area around it. Otherwise, the advantage of a good starting 
value may disappear. The quality of the starting value can be extracted from the prediction error of the 
interpolator.

Option 4: Bypassing the optimization altogether. If more and more optima are computed, more and 
more information becomes available to train and improve the model that estimates the relation between 
the fingerprints and the corresponding optima. If both the fingerprints and the method to model this 
relation are chosen well, prediction errors of subsequent optima can become very small. When these 
predicted optima are used as starting values, the optimization process will only add little accuracy to 
the estimated optima. The starting values can become practically indistinguishable from the real optima. 
In such a case, it is not a problem to bypass the optimization process because the accuracy that can be 
gained is negligible compared to intrinsic (i.e., Monte Carlo) error in the resampling itself1,21. Therefore, 
it is unnecessary to know the optima with highest possible precision. The predicted optima, including 
a small error, can just as well be used as the real optima. This brings the speed increase of our method 
to a whole new level, the optimization process can now be skipped. As we note in the discussion, it can 
be hard to estimate how this prediction error exactly influences the accuracy of the uncertainty measure 
the resampling method computes.

Assessing the performance of the methods. The performance of the methods is assessed from 
two perspectives. First, the time needed to estimate the parameters for the series of resampled data sets 
(averaged over a number of replications in order to reduce the error) is evaluated. Second, we assess how 
the different methods deal with an intrinsic speed-accuracy trade-off: A longer computation time leads 
to more accurate results, but how does the accuracy of the methods compare given a fixed computational 
load?

We measure computation time in terms of number of function evaluations (where the function is the 
objective function that needs to be optimized for every resampled data set, such as the likelihood or least 
squares loss function). The two computationally most expensive parts of our method (i.e., the time the 
optimization algorithm needs to converge and the computation time of the derivative-based fingerprints) 
can be measured in this number of function evaluations.

The method proposed in this paper will be most useful if the optimization process is unbearably slow. 
Another aspect of our method involves the modeling of the relation between the fingerprints and the 
optima and does not place a large burden on the computation. It can be neglected because it does not 
scale with the difficulty of the optimization process. The relative amount of time needed for the interpo-
lator (such as the LS-SVM or MARS) will be close to zero in cases of high computational burden. For 
example, using one core on an Intel Core i7-3770 with 3.4 GHz, the execution time of the estimation of 
one LS-SVM is 1.5 seconds with a training set of 200 previous fingerprints and optima.

Another reason not to consider the interpolator in the total computational cost is because it is unnec-
essary to update the modeled relation between fingerprints and optima after each optimization process. 
The modeled relation and the quality of the predictions will only significantly change if the training data 
changes significantly. This will not be the case if only one couple (i.e., fingerprint and associated opti-
mum) is added. We propose to update and remodel the relation only when %10  more information is 
available. In practice, the modeling of the relation can be stopped if the reduction in prediction error is 
only marginal. We stop this modeling when more than 1000 optima are found. Other machine learning 
improvements are possible to further reduce the time needed by this modeling, like online updating and 
big data solutions27. All these options are however not included to present a much cleaner picture of our 
method.

In sum, when considering computational time, we opt to neglect the part spent to modeling the 
relation between fingerprints and optima in the determination of computational time and only express 
the computation time in number of function evaluations. This gives the opportunity to also study the 
effects of our method in simpler problems, where the optimization process is very fast (such as for the 
two simple examples).
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Optimization algorithm. The optimization procedure used by fingerprint resampling is not central 
to the method. In the result section we use the Nelder-Mead method44. This algorithm is used for its 
generality and its popularity45. It is derivative free and can be used on almost any convex function. 
Moreover, it is the default algorithm used by the basic optimizers in Matlab and R (i.e., fminsearch 
in Matlab46,47, and optim in R48) and it is used in the popular lmer function in R to estimate mixed 
models. The Matlab function fminsearch is used as basic implementation of this algorithm.

The Nelder-Mead method is an optimization algorithm that uses simplexes with +D 1 vertices 
V V Vd D( , ,... )0  , with D the dimension of the parameter vector to optimize. When initializing the algo-

rithm, vertex V 0 is set to the starting value, θ. For example, in the fminsearch function, the complete 
initial simplex is then assigned similar as in Algorithm 1.
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Algorithm 1. Initialization of the initial simplex as done by fminsearch, for ( )V d0  not equal to zero. 
( )V dd  is the d-th entry of vector V d.

The initial simplex can be improved upon considerably when more information becomes available. 
When modeling the relation between the fingerprints and the optima, future optima are predicted but 
we can also estimate an error of these predictions. For instance, this error can be estimated with a fast 
leave-one-out cross-validation. The interpolator will assign for dimension d of the parameter vector a 
prediction error, denoted ε ( )d . The assignment of the initial simplex is then changed as indicated in 
Algorithm 2.
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Algorithm 2. Initialization of the initial simplex using the prediction error ( )d  for each dimension d. 
( )V dd  is the d-th entry of vector V d. θTolerance  is the user-defined value for assessing convergence 

based on the parameter values.

The convergence criterion used for the Nelder-Mead optimization method is when the maximum 
distance (infinite norm) between the vertices is smaller than θTolerance  and the maximum difference 
between their corresponding function values is smaller than Tolerance f . In our applications, both tol-
erances are set to −10 6.

Mathematical models used. In the result section we make use of an exponential distribution, a 
linear regression, a mixed effects model and a generalized extreme value distribution. The mathematical 
model of the exponential distribution is already discussed in this result section. Here we will give every 
necessary detail about the other three models.

Linear regression. In the second simple example in the result section, a linear regression model is used. 
With data set ( )= ( , ), ( , ),...,( , )X x y x y x yn n1 1 2 2 , regression weight β and known variance σ 2, its like-
lihood is given by
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with = ( , …, )x xx n
t

1  and = ( , …, )y yy n
t

1 . For simplicity, only the case where σ 2 is known and equal 
to one is considered. The loglikelihood simplifies to

β π
β β

( ) = − −
( − ) ( − )

. ( ) X n log
y x y x

;
2

2
2 17

t

In the result section, =M 99 synthetic data sets are simulated with =n 100, β = 2 and σ = 12 . For 
each simulated data set, =B 1000 bootstrap data sets are generated. For each bootstrap sample this 
loglikelihood is maximized for the single parameter β. Its analytical solution is given by

β = .
( )

ˆ x y
x x 18

t

t

As explained in the result section, an iterative optimization algorithm is used to optimize the 
loglikelihood.

For variant F1, a one-dimensional fingerprint is created using the first derivative of the loglikelihood 
in the original optimum:


β σ
β

β
=

( , )
=
− +

,
( )β β

,

=



ˆ

ˆ

d X
d

x y x x; 2

2 19
b

b b
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b b
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b
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2
0
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For variant F 2, a two-dimensional fingerprint is created by combining this fingerprint with the second 
order derivative of the loglikelihood in the original optimum:


β σ

β
=
∂ ( , )

∂
= .

( )β β

,

=



ˆ

X
x x

;

20
b

b
b
t

b2

2 2

2
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Both derivatives are computed with finite differences in the result section. As shown in the result 
section, one cannot create an exact function between fingerprint  ,i1  from Equation 19 and the optimum 
β̂ i from Equation 18 (variant F1). However, using a two dimensional fingerprint (variant F 2), using 
Equations 18, 19 and 20 one can derive the following functional relation:

 


β

β
=

−
.

( )
, ,

,

ˆ
ˆ

21
b

b b

b

0 2 1

2

This relation leads to much better predictions of new optima, as is illustrated in the result section.

Mixed model. In line with Verbeke & Molenberghs8, we start with a random sample of N  units. For 
each unit i, ni measurements are taken with respect to an outcome variable and these measurements are 
collected in a vector y i. Next, the following model is assumed:

β ε= + + . ( )X Zy b 22i i i i i

with ∼ ( , )N Db 0i  and σε ∼ ( , )N I0i
2  and ε ε,..., , ,...,b bN N1 1  independent. The parameter vector β 

contains the fixed effects regression coefficients and D is the population variance-covariance matrix. Such 
a general linear mixed model implies the following marginal model:

σβ∼ ( , + ), ( )Y N X Z DZ I 23i i i i
t 2

The loglikelihood is then given by

∑ σ σ πσ β σ β= − ( ( ( , ) ) + ( − ) ( , )( − ) + ( )),
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−
 log V Y X V Y X n log2 2
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and m the number of random effects. In practice however, it is better to use a differently parametrized 
loglikelihood49,50. First, to assure the positive definiteness of this matrix, we use a Cholesky 
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decomposition of D49. Second, to reduce the number of parameters of the optimization problem, β and 
σ can be profiled out50. This leaves us with unique ( + )m m 1

2
 parameters, θ θ θ= ( ,..., )( + )/m m1 1 2 , to opti-

mize. To find the variances of random effects of the mixed model, the resulting optima (both the ones 
found after an iterative optimization and the ones predicted) have to be translated back to their original 
parametrization, as used in Equation 24. Note that, due to the Cholesky decomposition, some of these 
parameters can only have a positive contribution in Equation 24. For example, a parameter θi is only 
used as θi

2, even when θ<0 it can only have a positive contribution θ >02 . This means that we introduce 
an indirect constraint.

In the data of Bringmann et al., used in the result section, both the intercept and the slope are 
assumed to vary across patients14. No restrictions are imposed on the variance matrix of these random 
effects (except for positive definiteness):

σ σ

σ σ
=











,

( )

, ,

, ,

D
26

D D

D D

1
2

12

12 2
2

which leads to a three dimensional optimization problem.
To bootstrap this data, we use the so-called case bootstrap30,31. The case bootstrap is a non-parametric 

bootstrap which uses the clusters (in our case, the patients), as entities to sample from. The whole boot-
strap process is repeated =M 99 times, each time with =B 2000 new random bootstrap iterations.

In the software package (see the Code availability paragraph), in the exampleFingerprintBootstrap.m 
file, the fingerprint bootstrap is also applied on a mixed model using artificial data.

Generalized extreme value distribution. For the generalized extreme value distribution with data set
= (( , ), ( , ),...,( , ))X x y x y x yn n1 1 2 2 , shape parameter ξ, scale parameter σ and location parameter 

µ α β= + xi i, the likelihood is given by

 ∏ξ σ α β ξ
µ

σ
( , , , ) =






−


 +

− 








.

( )

ξ

=

− /

X
y

; exp 1
27i

n
i i

1

1

In the data set used in the result section, xi is given by the maximum windspeed of a certain day, and 
yi is given by the date (number of days after first measurement). The logarithm of this likelihood is 
computed using an adapted version of gevlik.m of Matlab46. To find the maximum of this loglikelihood, 
a four dimensional optimization problem is solved using the Nelder-Mead method. As a naive starting 
value we use moment estimators as proposed by Hosking et al.51 and a least squares estimation for the 
α and β parameters52.

It is interesting to note that the likelihood can only be computed if ξ+ >
µ

σ

−
1 0

yi i . It is therefore 
possible that for some data sets, the fingerprint resampling method might need to be adapted. If the 
original optimum leads to an invalid likelihood for some bootstrap data sets, the original optimum can-
not be used as a starting value, nor can the derivatives be calculated to create a fingerprint. In such a 
case, it is advised to use another sort of fingerprint. For the data set in the result section, there were no 
such problems.

Speed-accuracy trade-off for the bootstrap. In the result section, we estimate the lower bound of 
a 95% confidence interval using bootstrap. From a series of B bootstrap samples, this lower bound is the 
. %2 5  percentile, denoted as θ( . )

ˆ B
0 025 . Using the percentile bootstrap confidence interval method, this per-

centile can be estimated as29:

θ θ= ( . ) , ( )( . )
ˆ ⌊ ⌋ ^B{ 0 025 th largest of } 28

B
b0 025

where ⋅⌊ ⌋ is the flooring function. Obviously, it is always better to use more than less bootstrap itera-
tions. For the mixed model problem we use =B 2000 bootstrap iterations as the end goal. However, we 
also monitor θ( . )

ˆb
0 025  as a function of = , ,…,b B1 2 . For any b or < ∞B , θ( . )

ˆb
0 025  and θ( . )

ˆ B
0 025  will always 

be approximations of θ( . )
∞ˆ
0 025 , which uses an infinite number of bootstrap iterations. Adding bootstrap 

optima one after the other, our estimate θ( . )
ˆb

0 025  will come closer and closer to θ( . )
∞ˆ
0 025 . The error will 

decrease further and further. However, more bootstrap iterations generally means more function evalu-
ations. Hence, there is an intrinsic trade-off between speed (number of function evaluations) and accu-
racy ( ε| |( . )

b
0 025 , the absolute difference between θ( . )

ˆb
0 025  and θ( . )

∞ˆ
0 025 ). θ( . )

∞ˆ
0 025  itself can obviously not be 

computed. For the bootstrap of the mixed model, it is approximated using θ( . )
ˆ

0 025
198000, combining all boot-

strap iterations of the 99 bootstrap processes. This combination of all bootstrap iterations over all the 
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bootstrap processes is allowed, as each bootstrap process is created using the same original data set and 
all bootstrap data sets are generated independent and at random. The accuracy can now be computed as:

ε θ θ= − . ( )( . ) ( . ) ( . )ˆ ˆ ˆ
29

b b
0 025 0 025 0 025

198000

The exact speed up our method achieves is measured at two different accuracies. First, it is measured 
at what is called a high accuracy. This is approximately the accuracy of the original optimum variant 
when the bootstrap process is completed, after =B 2000 bootstrap iterations, ε| |( . )ˆ B

0 025 . Second, it is meas-
ured at what is called a medium accuracy, which has an error twice as big as the high accuracy: ε| |( . )ˆ2 B

0 025 .
As explained before, resampled data sets with extreme fingerprints are prioritized (to avoid extrapo-

lation). This means that potentially extreme optima are found first which may disturb the accuracy of 
θ( . )
ˆb

0 025  for small b. We controlled in an ad hoc way for this artefact by assigning weights to these prior-
itized optima related to the inverse of the original index of their associated data set. Resampled data sets 
that are prioritized will get a lower weight for small b. Note that this correction has no effect at all if all 
optima (predicted or found by an optimization process) are used. So in a normal implementation, where 
all optima will always be used, this correction is of no importance. Only for the speed-accuracy trade-off 
figure (to show the evolution of the accuracy), such a correction must be made.

To estimate the effects of parallelization for a set up with c cores, the function evaluations and accu-
racies are grouped together in batches of c bootstrap estimations. The whole batch would be computed 
simultaneously on the c cores. In a parallelization context, bootstrap estimations which are in the same 
batch cannot learn from each other, only information of bootstrap estimates of previous batches is avail-
able. The speed up is recalculated undoing the effects of this information which is now unavailable. For 
example, if =c 2000 cores are used to compute 2000 bootstrap estimates, all estimations happen in the 
same batch. Therefore, since no bootstrap estimation can be speeded up using information of any previ-
ous calculations, the fingerprint resampling method would be useless in such a case.

Code availability. Our method is implemented in Matlab, the software package and all data necessary 
to replicate this paper can be found at

http://ppw.kuleuven.be/okp/software/fingerprintresampling/. The original data set used for the mixed 
model example can also be found at

http://journals.plos.org/plosone/article?id= 10.1371/journal.pone.006018814. The original data set 
used for the GEV example can be found at

http://www.knmi.nl/climatology/daily_data/selection.cgi41. Most results were obtained using Matlab 
2014a on a supercomputer using 5 nodes (100 processors)46. One processor was used to coordinate the 
99 other processors. Each processor was used to compute one bootstrap process of 2000 bootstraps, using 
all possible variants. This is the reason why exactly =M 99 bootstrap processes are used to illustrate the 
speed up of our method.
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