370 research outputs found
Evaluating Red Wolf Scat to Deter Coyote Access to Urban Pastureland
Depredation of domestic livestock by wildlife is a leading source of human–wildlife conflict, often requiring intervention at the local level. Historically, these interventions have resulted in the use of lethal methods to remove the offending animal. In response to increased public opposition to lethal control methods, wildlife managers have sought to identify effective nonlethal biological options to mitigate wildlife depredations. In 2018, we tested the concept of a biological deterrent using red wolf (Canis rufus) scat that had historically been spread along fence lines to prevent depredation of lambs (Ovis aries) and kid goats (Capra aegagrus hircus) at the North Carolina State University College of Veterinary Medicine 32-ha Teaching Animal Unit (TAU), North Carolina, USA. To conduct the study, we deployed paired camera traps at 3 locations where we had previously observed coyotes (C. latrans) accessing the TAU. The study was conducted over a 94-day period alternating between no scat and freshly collected scat that was placed every 3 days from adult male red wolves. The study period overlapped lambing and kidding season. In addition to coyotes, the camera traps routinely detected red foxes (Vulpes vulpes) and raccoons (Procyon lotor). The red wolf scat we placed at the access point did not deter any of the mesocarnivores from entering the pasture
Comparative genomics of isolates of a pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients
Pseudomonas aeruginosa is the main cause of fatal chronic lung infections among individuals suffering from cystic fibrosis (CF). During the past 15 years, particularly aggressive strains transmitted among CF patients have been identified, initially in Europe and more recently in Canada. The aim of this study was to generate high-quality genome sequences for 7 isolates of the Liverpool epidemic strain (LES) from the United Kingdom and Canada representing different virulence characteristics in order to: (1) associate comparative genomics results with virulence factor variability and (2) identify genomic and/or phenotypic divergence between the two geographical locations. We performed phenotypic characterization of pyoverdine, pyocyanin, motility, biofilm formation, and proteolytic activity. We also assessed the degree of virulence using the Dictyostelium discoideum amoeba model. Comparative genomics analysis revealed at least one large deletion (40-50 kb) in 6 out of the 7 isolates compared to the reference genome of LESB58. These deletions correspond to prophages, which are known to increase the competitiveness of LESB58 in chronic lung infection. We also identified 308 non-synonymous polymorphisms, of which 28 were associated with virulence determinants and 52 with regulatory proteins. At the phenotypic level, isolates showed extensive variability in production of pyocyanin, pyoverdine, proteases and biofilm as well as in swimming motility, while being predominantly avirulent in the amoeba model. Isolates from the two continents were phylogenetically and phenotypically undistinguishable. Most regulatory mutations were isolate-specific and 29% of them were predicted to have high functional impact. Therefore, polymorphism in regulatory genes is likely to be an important basis for phenotypic diversity among LES isolates, which in turn might contribute to this strain's adaptability to varying conditions in the CF lung
The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect
We present constraints on cosmological parameters based on a sample of
Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave
survey by the Atacama Cosmology Telescope. The cluster sample used in this
analysis consists of 9 optically-confirmed high-mass clusters comprising the
high-significance end of the total cluster sample identified in 455 square
degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive
systems to reduce the degeneracy between unknown cluster astrophysics and
cosmology derived from SZ surveys. We describe the scaling relation between
cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the
values of the parameters in this fit with conservative priors gives sigma_8 =
0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological
model with WMAP 7-year priors on cosmological parameters. This gives a modest
improvement in statistical uncertainty over WMAP 7-year constraints alone.
Fixing the scaling relation between cluster mass and SZ signal to a fiducial
relation obtained from numerical simulations and calibrated by X-ray
observations, we find sigma_8 = 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These
results are consistent with constraints from WMAP 7 plus baryon acoustic
oscillations plus type Ia supernoava which give sigma_8 = 0.802 +/- 0.038 and w
= -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared
to clusters simulated assuming the fiducial model also shows good agreement.
These results suggest that, given the sample of clusters used here, both the
astrophysics of massive clusters and the cosmological parameters derived from
them are broadly consistent with current models.Comment: 12 pages, 7 figures. Submitted to Ap
Feasibility and safety of a 6-month exercise program to increase bone and muscle strength in children with juvenile idiopathic arthritis
Background: Arthritis in childhood can be associated with muscle weakness around affected joints, low bone mass and low bone strength. Exercise is recognized as an important part of management of children with juvenile idiopathic arthritis (JIA) but the exercise prescription to best promote bone and muscle health is unknown. We therefore aimed to: 1. assess feasibility and safety of a 6-month home- and group-based exercise program for children with JIA; 2. estimate the effect of program participation on bone mass and strength, muscle function and clinical outcomes and 3. determine if any positive changes in bone and muscle outcomes are maintained 6 months later. Methods: We recruited 24 children with JIA who were part of the Linking Exercise, Physical Activity and Pathophysiology in Childhood Arthritis (LEAP) study to participate in a 6-month home-based exercise program involving jumping and handgrip exercises, resistance training and one group exercise session per month. We assessed lumbar spine bone mass (dual energy X-ray absorptiometry), distal tibia and radius bone microarchitecture and strength (high-resolution peripheral quantitative computed tomography), muscle function (jumping mechanography, dynamometry) and clinical outcomes (joint assessment, function, health-related quality of life) at baseline, 6- and 12-months. Adherence was assessed using weekly activity logs. Results: Thirteen children completed the 6-month intervention. Participants reported 9 adverse events and post-exercise pain was rare (0.4%). Fatigue improved, but there were no other sustained improvements in muscle, bone or clinical outcomes. Adherence to the exercise program was low (47%) and decreased over time. Conclusion: Children with JIA safely participated in a home-based exercise program designed to enhance muscle and bone strength. Fatigue improved, which may in turn facilitate physical activity participation. Prescribed exercise posed adherence challenges and efforts are needed to address facilitators and barriers to participation in and adherence to exercise programs among children with JIA. Trial registration: Data of the children with JIA are from the LEAP study (Canadian Institutes of Health Research (CIHR; GRANT# 107535). http://www.leapjia.com/
The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect
We present optical and X-ray properties for the first confirmed galaxy
cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over
455 square degrees of sky made with the Atacama Cosmology Telescope. These
maps, coupled with multi-band imaging on 4-meter-class optical telescopes, have
yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066.
Of these 23 clusters, 10 are newly discovered. The selection of this sample is
approximately mass limited and essentially independent of redshift. We provide
optical positions, images, redshifts and X-ray fluxes and luminosities for the
full sample, and X-ray temperatures of an important subset. The mass limit of
the full sample is around 8e14 Msun, with a number distribution that peaks
around a redshift of 0.4. For the 10 highest significance SZE-selected cluster
candidates, all of which are optically confirmed, the mass threshold is 1e15
Msun and the redshift range is 0.167 to 1.066. Archival observations from
Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that
are broadly consistent with this mass threshold. Our optical follow-up
procedure also allowed us to assess the purity of the ACT cluster sample.
Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise
ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported
sample represents one of the largest SZE-selected sample of massive clusters
over all redshifts within a cosmologically-significant survey volume, which
will enable cosmological studies as well as future studies on the evolution,
morphology, and stellar populations in the most massive clusters in the
Universe.Comment: 20 pages, 15 figures, 6 tables. Accepted for publication in ApJ.
Higher resolution figures available at:
http://peumo.rutgers.edu/~felipe/e-prints
The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey
We report on extragalactic sources detected in a 455 square-degree map of the
southern sky made with data at a frequency of 148 GHz from the Atacama
Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources
with flux densities spanning two orders of magnitude: from 15 to 1500 mJy.
Comparison to other catalogs shows that 98% of the ACT detections correspond to
sources detected at lower radio frequencies. Three of the sources appear to be
associated with the brightest cluster galaxies of low redshift X-ray selected
galaxy clusters. Estimates of the radio to mm-wave spectral indices and
differential counts of the sources further bolster the hypothesis that they are
nearly all radio sources, and that their emission is not dominated by
re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with
complete cross-identifications from the Australia Telescope 20 GHz survey, we
observe an average steepening of the spectra between 5, 20, and 148 GHz with
median spectral indices of , , and . When the
measured spectral indices are taken into account, the 148 GHz differential
source counts are consistent with previous measurements at 30 GHz in the
context of a source count model dominated by radio sources. Extrapolating with
an appropriately rescaled model for the radio source counts, the Poisson
contribution to the spatial power spectrum from synchrotron-dominated sources
with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times
10^{-6} \micro\kelvin^2.Comment: Accepted to Ap
The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey
We present measurements of the cosmic microwave background (CMB) power
spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as
well as the cross-frequency spectrum between the two channels. Our results
clearly show the second through the seventh acoustic peaks in the CMB power
spectrum. The measurements of these higher-order peaks provide an additional
test of the {\Lambda}CDM cosmological model. At l > 3000, we detect power in
excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 <
l < 3000, we find evidence for gravitational lensing of the CMB in the power
spectrum at the 2.8{\sigma} level. We also detect a low level of Galactic dust
in our maps, which demonstrates that we can recover known faint, diffuse
signals.Comment: 19 pages, 13 figures. Submitted to ApJ. This paper is a companion to
Hajian et al. (2010) and Dunkley et al. (2010
The Atacama Cosmology Telescope: Data Characterization and Map Making
We present a description of the data reduction and mapmaking pipeline used
for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The
data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from
2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours
of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours
of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2
hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were
devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial
equator. We discuss sources of statistical and systematic noise, calibration,
telescope pointing, and data selection. Out of 1260 survey hours and 1024
detectors per array, 816 hours and 593 effective detectors remain after data
selection for this frequency band, yielding a 38% survey efficiency. The total
sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in
the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units.
Atmospheric brightness fluctuations constitute the main contaminant in the data
and dominate the detector noise covariance at low frequencies in the TOD. The
maps were made by solving the least-squares problem using the Preconditioned
Conjugate Gradient method, incorporating the details of the detector and noise
correlations. Cross-correlation with WMAP sky maps, as well as analysis from
simulations, reveal that our maps are unbiased at multipoles ell > 300. This
paper accompanies the public release of the 148 GHz southern stripe maps from
2008. The techniques described here will be applied to future maps and data
releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape
The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey
We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich
(SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made
with data from the Atacama Cosmology Telescope 2008 observing season. All SZ
detections announced in this work have confirmed optical counterparts. Ten of
the clusters are new discoveries. One newly discovered cluster, ACT-CL
J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement
comparable to the most massive systems at lower redshifts. Simulations of the
cluster recovery method reproduce the sample purity measured by optical
follow-up. In particular, for clusters detected with a signal-to-noise ratio
greater than six, simulations are consistent with optical follow-up that
demonstrated this subsample is 100% pure. The simulations further imply that
the total sample is 80% complete for clusters with mass in excess of 6x10^14
solar masses referenced to the cluster volume characterized by five hundred
times the critical density. The Compton y -- X-ray luminosity mass comparison
for the eleven best detected clusters visually agrees with both self-similar
and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap
- …