1,604 research outputs found

    A laminar roughness boundary condition

    Get PDF
    A modified slip boundary condition is obtained to represent the effects of small roughness-like perturbations to an otherwise-plane fixed wall which is acting as a boundary to steady laminar flow of a viscous fluid. In its simplest form, for low local Reynolds number and small roughness slope, this boundary condition involves a constant apparent backflow at the mean surface or, equivalently, represents a shift of the apparent plane boundary toward the flow domain. Extensions of the theory are also made to include finite local Reynolds number and finite roughness slope.E. O. Tuck and A. Kouzoubo

    Exact and semiclassical approach to a class of singular integral operators arising in fluid mechanics and quantum field theory

    Full text link
    A class of singular integral operators, encompassing two physically relevant cases arising in perturbative QCD and in classical fluid dynamics, is presented and analyzed. It is shown that three special values of the parameters allow for an exact eigenfunction expansion; these can be associated to Riemannian symmetric spaces of rank one with positive, negative or vanishing curvature. For all other cases an accurate semiclassical approximation is derived, based on the identification of the operators with a peculiar Schroedinger-like operator.Comment: 12 pages, 1 figure, amslatex, bibtex (added missing label eq.11

    Visualization of defect-induced excitonic properties of the edges and grain boundaries in synthesized monolayer molybdenum disulfide

    Full text link
    Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) are attractive materials for next generation nanoscale optoelectronic applications. Understanding nanoscale optical behavior of the edges and grain boundaries of synthetically grown TMDCs is vital for optimizing their optoelectronic properties. Elucidating the nanoscale optical properties of 2D materials through far-field optical microscopy requires a diffraction-limited optical beam diameter sub-micron in size. Here we present our experimental work on spatial photoluminescence (PL) scanning of large size ( ≥50\geq 50 microns) monolayer MoS2_2 grown by chemical vapor deposition (CVD) using a diffraction limited blue laser beam spot (wavelength 405 nm) with a beam diameter as small as 200 nm allowing us to probe nanoscale excitonic phenomena which was not observed before. We have found several important features: (i) there exists a sub-micron width strip (∼500\sim 500 nm) along the edges that fluoresces ∼1000%\sim 1000 \% brighter than the region far inside; (ii) there is another brighter wide region consisting of parallel fluorescing lines ending at the corners of the zig-zag peripheral edges; (iii) there is a giant blue shifted A-excitonic peak, as large as ∼120\sim 120 meV, in the PL spectra from the edges. Using density functional theory calculations, we attribute this giant blue shift to the adsorption of oxygen dimers at the edges, which reduces the excitonic binding energy. Our results not only shed light on defect-induced excitonic properties, but also offer an attractive route to tailor optical properties at the TMDC edges through defect engineering.Comment: 10 pages, 4 figures in Journal of Physical Chemistry C, 201

    Study of aircraft in intraurban transportation systems, volume 1

    Get PDF
    An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas

    Dynamics of water evaporation from porous asphalt

    Get PDF
    The dynamics of water evaporation from porous asphalt mixture, with porosity ranging from 15% to 12 29%, have been investigated in this article. In order to test the same samples under different conditions, the pore structure of asphalt was quantified using X-ray Computed Tomography (CT) scans and 3D printed in transparent resin blocks. 3D printed transparent resin samples were tested under controlled laboratory conditions to understand the effect of pore space topology on the water retention and drying dynamics. The macroporosity, pore size distribution, air void tortuosity, water conductivity, and water retention curves of the 3D printed porous asphalt samples were quantified by means of image analysis. Moreover, a model was developed and tested experimentally to estimate the evaporation rates from porous asphalt materials under a wide range of porosities. Within the range of asphalt mixtures studied in the present work, the evaporation rate is related predominantly to the porosity, pore size distribution and tortuosity. It was found that the period over which water evaporation occurs at the surface is relatively short during drying of porous asphalt materials due to their relatively large pores weakening the capillary forces. This results in significantly shortening the so-called stage-1 evaporation (when the drying rate is controlled by liquid vaporisation at the surface) and early onset of the transition period (when both surface water evaporation and vapour diffusion inside porous asphalt play a comparable role in supplying the 26 evaporative demand). The transition period is followed by the stage-2 evaporation when the process is limited by the vapour diffusion inside the porous asphalt. Our results illustrate that the beginning of the stage-2 evaporation depends on the porosity and tortuosity of the porous asphalt material among other parameters. Our results and analysis provide new insights into the dynamics of water evaporation from asphalt materials

    Dynamics of water evaporation from porous asphalt

    Get PDF
    The dynamics of water evaporation from porous asphalt mixture, with porosity ranging from 15% to 29%, have been investigated in this article. In order to test the same samples under different conditions, the pore structure of asphalt was quantified using X-ray Computed Tomography (CT) scans and 3D printed in transparent resin blocks. 3D printed transparent resin samples were tested under controlled laboratory conditions to understand the effect of pore space topology on the water retention and drying dynamics. The macroporosity, pore size distribution, air void tortuosity, water conductivity, and water retention curves of the 3D printed porous asphalt samples were quantified by means of image analysis. Moreover, a model was developed and tested experimentally to estimate the evaporation rates from porous asphalt materials under a wide range of porosities. Within the range of asphalt mixtures studied in the present work, the evaporation rate is related predominantly to the porosity, pore size distribution and tortuosity. It was found that the period over which water evaporation occurs at the surface is relatively short during drying of porous asphalt materials due to their relatively large pores weakening the capillary forces. This results in significantly shortening the so-called stage-1 evaporation (when the drying rate is controlled by liquid vaporisation at the surface) and early onset of the transition period (when both surface water evaporation and vapour diffusion inside porous asphalt play a comparable role in supplying the evaporative demand). The transition period is followed by the stage-2 evaporation when the process is limited by the vapour diffusion inside the porous asphalt. Our results illustrate that the beginning of the stage-2 evaporation depends on the porosity and tortuosity of the porous asphalt material among other parameters. Our results and analysis provide new insights into the dynamics of water evaporation from asphalt materials

    Small scale structure and mixing at the edge of the Antarctic vortex

    Get PDF
    Small scale correlations and patterns in the chemical tracers measured from the NASA ER-2 aircraft in the 1987 AAOE campaign can be used to investigate the structure of the edge of the polar vortex and the chemically perturbed region within it. Examples of several types of transport processes can be found in the data. Since ClO and O3 have similar vertical gradients and opposite horizontal gradients near the chemically perturbed region, the correlation between ClO and O3 can be used to study the extent of horizontal transport at the edge of the chemically perturbed region. Horizontal transport dominates the correlation for a latitude band up to 4 degrees on each side of the boundary. This implies a transition zone containing a substantial fraction of the mass of the total polar vortex. Similar horizontal transport can be seen in other tracers as well. It has not been possible to distinguish reversible transport from irreversible mixing. One manifestation of the horizontal transport is that the edge of the chemically perturbed region is often layered rather than a vertical curtain. This can be seen from the frequent reversed vertical gradients of NO2, caused by air with high NO2 overlapping layers with lower mixing ratios. Water and NO2 are positively correlated within the chemically perturbed region. This is the opposite sign to the correlation in the unperturbed stratosphere. The extent of the positive correlation is too great to be attributed solely to horizontal mixing. Instead, it is hypothesized that dehydration and descent are closely connected on a small scale, possibly due to radiative cooling of the clouds that also cause ice to fall to lower altitudes

    Residual disorder and diffusion in thin Heusler alloy films

    Full text link
    Co2FeSi/GaAs(110) and Co2FeSi/GaAs(111)B hybrid structures were grown by molecular-beam epitaxy and characterized by transmission electron microscopy (TEM) and X-ray diffraction. The films contained inhomogeneous distributions of ordered L2_1 and B2 phases. The average stoichiometry was controlled by lattice parameter measurements, however diffusion processes lead to inhomogeneities of the atomic concentrations and the degradation of the interface, influencing long-range order. An average long-range order of 30-60% was measured by grazing-incidence X-ray diffraction, i.e. the as-grown Co2FeSi films were highly but not fully ordered. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were found using dark-field TEM images taken with superlattice reflections

    Conformal Mapping on Rough Boundaries II: Applications to bi-harmonic problems

    Full text link
    We use a conformal mapping method introduced in a companion paper to study the properties of bi-harmonic fields in the vicinity of rough boundaries. We focus our analysis on two different situations where such bi-harmonic problems are encountered: a Stokes flow near a rough wall and the stress distribution on the rough interface of a material in uni-axial tension. We perform a complete numerical solution of these two-dimensional problems for any univalued rough surfaces. We present results for sinusoidal and self-affine surface whose slope can locally reach 2.5. Beyond the numerical solution we present perturbative solutions of these problems. We show in particular that at first order in roughness amplitude, the surface stress of a material in uni-axial tension can be directly obtained from the Hilbert transform of the local slope. In case of self-affine surfaces, we show that the stress distribution presents, for large stresses, a power law tail whose exponent continuously depends on the roughness amplitude

    Voice, autonomy and utopian desire in participatory film-making with young refugees

    Get PDF
    This article is a reflection on what reflexive documentary scholars call the ‘moral dimension’ (Nash 2012: 318) of a participatory filmmaking project with refugee young people, who wanted to make a film to support other new young arrivals in the process of making home in Scotland. In the first part, we highlight some of the challenges of collaborating with refugee young people, in light of the often de-humanising representations of refugees in mainstream media and the danger of the triple conflation of authenticity-voice-pain in academic narratives about refugees. In the second part, we show how honouring young people’s desire to convey the hopeful aspects of making home, emerged as a key pedagogical strategy to affirm their expert position and encourage their participation in the project. Revisiting key moments of learning and interaction, we demonstrate how young people’s process of ‘finding a voice’ in moment-by-moment filmmaking practice was not a linear, developmental process towards ‘pure’ individual empowerment and singular artistic expression. Their participation in shaping their visual (self-)representation in the final film, was embedded in the dialogical process and pragmatic requirements of a collaborative film production, in which voice, autonomy and teacher authority were negotiated on a moment-by-moment basis. We conclude that it is vital for a reflexive practice and research to not gloss over the moral dilemmas in the name of progressive ideals, for example, when representations are co-created by project filmmakers/educators, but embrace these deliberations as part of the ‘fascinating collaborative matrix’ (Chambers 2019: 29) of participatory filmmaking
    • …
    corecore