A class of singular integral operators, encompassing two physically relevant
cases arising in perturbative QCD and in classical fluid dynamics, is presented
and analyzed. It is shown that three special values of the parameters allow for
an exact eigenfunction expansion; these can be associated to Riemannian
symmetric spaces of rank one with positive, negative or vanishing curvature.
For all other cases an accurate semiclassical approximation is derived, based
on the identification of the operators with a peculiar Schroedinger-like
operator.Comment: 12 pages, 1 figure, amslatex, bibtex (added missing label eq.11