1,098 research outputs found

    Lenalidomide before and after Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma

    Get PDF
    Although multiple myeloma remains incurable outside of allogeneic hematopoietic stem cell transplantation, novel agents made available only in the last few decades have nonetheless tremendously improved the landscape of myeloma treatment. Lenalidomide, of the immunomodulatory class of drugs, is one of those novel agents. In the non-transplant and relapsed/refractory settings, lenalidomide clearly benefits patients in terms of virtually all meaningful outcomes including overall survival. Data supporting the usage of lenalidomide as part of treatment approaches incorporating high-dose chemotherapy with autologous stem cell support (ASCT) are less mature as pertains to such long-term outcomes and toxicity, and lenalidomide is not currently approved by regulatory agencies for use in the context of ASCT in either the United States or Europe. That said, relatively preliminary efficacy data describing lenalidomide as a component of ASCT-based treatment approaches to MM are indeed promising, and consequently lenalidomide's role in ASCT-based treatment strategies is growing. In this review we summarize existing data that pertains to lenalidomide in the specific context of ASCT, and we share our thoughts on how our own group applies these data to approach this complex issue clinically

    Localization and Anomalous Transport in a 1-D Soft Boson Optical Lattice

    Full text link
    We study the dynamics of Bose-Einstein condensed atoms in a 1-D optical lattice potential in a regime where the collective (Josephson) tunneling energy is comparable with the on-site interaction energy, and the number of particles per lattice site is mesoscopically large. By directly imaging the motion of atoms in the lattice, we observe an abrupt suppression of atom transport through the array for a critical ratio of these energies, consistent with quantum fluctuation induced localization. Directly below the onset of localization, the frequency of the observed superfluid transport can be explained by a phonon excitation but deviates substantially from that predicted by the hydrodynamic/Gross-Pitaevskii equations.Comment: 14 pages, 5 figure

    Transitionless quantum drivings for the harmonic oscillator

    Full text link
    Two methods to change a quantum harmonic oscillator frequency without transitions in a finite time are described and compared. The first method, a transitionless-tracking algorithm, makes use of a generalized harmonic oscillator and a non-local potential. The second method, based on engineering an invariant of motion, only modifies the harmonic frequency in time, keeping the potential local at all times.Comment: 11 pages, 1 figure. Submitted for publicatio

    Economies of visibility as a moderator of feminism: ‘Never mind Brexit. Who won Legs‐it!’

    Get PDF
    This article utilizes economies of visibility to interpret how two UK women political leaders’ bodies are constructed in the press, online and by audience responses across several media platforms via a multimodal analysis. We contribute politicizing economies of visibility, lying at the intersection of politics of visibility and economies of visibility, as a possible new modality of feminist politics. We suggest this offers a space where feminism can be progressed. Analysis illustrates how economies of visibility moderate feminism and tie women leaders in various ways to their bodies; commodities constantly scrutinized. The study surfaces how media insist upon femininity through appearance from women leaders, serving to moderate power and feminist potential. We consider complexities attached to public consumption of powerful women's constructions, set up in opposition, where sexism is visible and visceral. This simultaneously fortifies moderate feminism and provokes feminism. The insistence on femininity nevertheless disrupts, through an arousal of audible and commanding feminist voices, to reconnect with the political project of women's equality

    Electronic properties of GaAs surfaces etched in an electron cyclotron resonance source and chemically passivated using P2S5P2S5

    Full text link
    Photoreflectance has been used to study the electronic properties of (100) GaAs surfaces exposed to a Cl2/ArCl2/Ar plasma generated by an electron cyclotron resonance source and subsequently passivated by P2S5.P2S5. The plasma etch shifts the Fermi level of p-GaAsp-GaAs from near the valence band to midgap, but has no effect on n-GaAs.n-GaAs. For ion energies below 250 eV, post-etch P2S5P2S5 chemical passivation removes the surface etch damage and restores the electronic properties to pre-etch conditions. Above 250 eV, the etch produces subsurface defects which cannot be chemically passivated. Auger electron spectroscopy shows that etching increases As at the GaAs/oxide interface, while passivation reduces it. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69373/2/APPLAB-73-1-114-1.pd

    The architectures of media power: editing, the newsroom, and urban public space

    Get PDF
    This paper considers the relation of the newsroom and the city as a lens into the more general relation of production spaces and mediated publics. Leading theoretically from Lee and LiPuma’s (2002) notion of ‘cultures of circulation’, and drawing on an ethnography of the Toronto Star, the paper focuses on how media forms circulate and are enacted through particular practices and material settings. With its attention to the urban milieus and orientations of media organizations, this paper exhibits both affinities with but also differences to current interests in the urban architectures of media, which describe and theorize how media get ‘built into’ the urban experience more generally. In looking at editing practices situated in the newsroom, an emphasis is placed on the phenomenological appearance of media forms both as objects for material assembly as well as more abstracted subjects of reflexivity, anticipation and purposiveness. Although this is explored with detailed attention to the settings of the newsroom and the city, the paper seeks to also provide insight into the more general question of how publicness is material shaped and sited

    Scheduling science on television: A comparative analysis of the representations of science in 11 European countries

    Get PDF
    While science-in-the-media is a useful vehicle for understanding the media, few scholars have used it that way: instead, they look at science-in-the-media as a way of understanding science-in-the-media and often end up attributing characteristics to science-in-the-media that are simply characteristics of the media, rather than of the science they see there. This point of view was argued by Jane Gregory and Steve Miller in 1998 in Science in Public. Science, they concluded, is not a special case in the mass media, understanding science-in-the-media is mostly about understanding the media (Gregory and Miller, 1998: 105). More than a decade later, research that looks for patterns or even determinants of science-in-the-media, be it in press or electronic media, is still very rare. There is interest in explaining the media’s selection of science content from a media perspective. Instead, the search for, and analysis of, several kinds of distortions in media representations of science have been leading topics of science-in-the-media research since its beginning in the USA at the end of the 1960s and remain influential today (see Lewenstein, 1994; Weigold, 2001; Kohring, 2005 for summaries). Only a relatively small amount of research has been conducted seeking to identify factors relevant to understanding how science is treated by the mass media in general and by television in particular. The current study addresses the lack of research in this area. Our research seeks to explore which constraints national media systems place on the volume and structure of science programming in television. In simpler terms, the main question this study is trying to address is why science-in-TV in Europe appears as it does. We seek to link research focussing on the detailed analysis of science representations on television (Silverstone, 1984; Collins, 1987; Hornig, 1990; Leon, 2008), and media research focussing on the historical genesis and current political regulation of national media systems (see for instance Hallin and Mancini, 2004; Napoli, 2004; Open Society Institute, 2005, 2008). The former studies provide deeper insights into the selection and reconstruction of scientific subject matters, which reflect and – at the same time – reinforce popular images of science. But their studies do not give much attention to production constraints or other relevant factors which could provide an insight into why media treat science as they do. The latter scholars inter alia shed light on distinct media policies in Europe which significantly influence national channel patterns. However, they do not refer to clearly defined content categories but to fairly rough distinctions such as information versus entertainment or fictional versus factual. Accordingly, we know more about historical roots and current practices of media regulation across Europe than we do about the effects of these different regimes on the provision of specific content in European societies

    Quantum Quenches in Extended Systems

    Full text link
    We study in general the time-evolution of correlation functions in a extended quantum system after the quench of a parameter in the hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical phenomena in d+1 dimensions. For d=1 this allows to use the powerful tools of conformal field theory in the case of critical evolution. Several results are obtained in generic dimension in the gaussian (mean-field) approximation. These predictions are checked against the real-time evolution of some solvable models that allows also to understand which features are valid beyond the critical evolution. All our findings may be explained in terms of a picture generally valid, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate with a finite speed through the system. Furthermore we show that the long-time results can be interpreted in terms of a generalized Gibbs ensemble. We discuss some open questions and possible future developments.Comment: 24 Pages, 4 figure

    Cavity QED with a Bose-Einstein condensate

    Full text link
    Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose-Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.Comment: 6 pages, 4 figures; version accepted for publication in Nature; updated Fig. 4; changed atom numbers due to new calibratio

    Elevated CO 2 alters leaf-litter-derived dissolved organic carbon: effects on stream periphyton and crayfish feeding preference

    Get PDF
    Elevated atmospheric CO2 increases plant C fixation, and much of the soluble C content of deciduous leaf litter entering streams is leached as dissolved organic C (DOC). The effects of DOC from trembling aspen (Populus tremuloides Michaux) leaf litter grown under elevated (ELEV ! 720 ppm) and ambient (AMB! 360 ppm) CO2 on stream periphyton were measured during a 35-d experiment in outdoor artificial stream chambers. Crayfish feeding preferences for periphyton grown in AMB and ELEV treatments were evaluated in short-term foraging trials using a Y-maze. Periphyton was sampled through time for ash- free dry mass (AFDM), chlorophyll a, total C:N, algal biovolume and species composition, and bacterial productivity and biomass. Leaf litter from plants grown under ELEV CO2 produced higher concentrations of refractory DOC than did leaf litter from plants grown under AMB CO2, and chlorophyll a concentrations were lower in periphyton enriched with ELEV DOC than in periphyton enriched with AMB DOC. ELEV DOC did not significantly affect bacterial productivity and biomass or total periphyton C:N, but cyanobacterial biovolume was higher in ELEValgal assemblages than in AMB algal assemblages after 35 d. AMB algal assemblages were dominated by the diatom Epithemia adnata var. proboscidea, which contains N- fixing endosymbionts. Orconectes virilis crayfish preferred AMB periphyton stimulus when offered the choice of AMB and ELEV stimuli or AMB and control stimuli. Our results suggest that DOC from trembling aspen leaf litter produced under ELEV CO2 alters algal accrual and species assemblages of stream periphyton, and this shift in basal resource quantity and quality could affect feeding preferences of crayfish
    corecore