87 research outputs found

    Failure of homologous synapsis and sex-specific reproduction problems

    Get PDF
    The prophase of meiosis I ensures the correct segregation of chromosomes to each daughter cell. This includes the pairing, synapsis, and recombination of homologous chromosomes. A subset of chromosomal abnormalities, including translocation and inversion, disturbs these processes, resulting in the failure to complete synapsis. This activates the meiotic pachytene checkpoint, and the gametes are fated to undergo cell cycle arrest and subsequent apoptosis. Spermatogenic cells appear to be more vulnerable to the pachytene checkpoint, and male carriers of chromosomal abnormalities are more susceptible to infertility. In contrast, oocytes tend to bypass the checkpoint and instead generate other problems, such as chromosome imbalance that often leads to recurrent pregnancy loss in female carriers. Recent advances in genetic manipulation technologies have increased our knowledge about the pachytene checkpoint and surveillance systems that detect chromosomal synapsis. This review focuses on the consequences of synapsis failure in humans and provides an overview of the mechanisms involved. We also discuss the sexual dimorphism of the involved pathways that leads to the differences in reproductive outcomes between males and females

    DNA secondary structure is influenced by genetic variation and alters susceptibility to de novo translocation

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>Cumulative evidence suggests that DNA secondary structures impact DNA replication, transcription and genomic rearrangements. One of the best studied examples is the recurrent constitutional t(11;22) in humans that is mediated by potentially cruciform-forming sequences at the breakpoints, palindromic AT-rich repeats (PATRRs). We previously demonstrated that polymorphisms of PATRR sequences affect the frequency of <it>de novo </it>t(11;22)s in sperm samples from normal healthy males. These studies were designed to determine whether PATRR polymorphisms affect DNA secondary structure, thus leading to variation in translocation frequency.</p> <p><b>Methods</b></p> <p>We studied the potential for DNA cruciform formation for several PATRR11 polymorphic alleles using mobility shift analysis in gel electrophoresis as well as by direct visualization of the DNA by atomic force microscopy. The structural data for various alleles were compared with the frequency of <it>de novo </it>t(11;22)s the allele produced.</p> <p><b>Results</b></p> <p>The data indicate that the propensity for DNA cruciform structure of each polymorphic allele correlates with the frequency of <it>de novo </it>t(11;22)s produced (r = 0.77, <it>P </it>= 0.01).</p> <p><b>Conclusions</b></p> <p>Although indirect, our results strongly suggest that the PATRR adopts unstable cruciform structures during spermatogenesis that act as translocation hotspots in humans.</p

    Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships

    Get PDF
    AbstractMedaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain–hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand–receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8–Fgfr1 while maintaining the ligand–receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    Separated Transcriptomes of Male Gametophyte and Tapetum in Rice: Validity of a Laser Microdissection (LM) Microarray

    Get PDF
    In flowering plants, the male gametophyte, the pollen, develops in the anther. Complex patterns of gene expression in both the gametophytic and sporophytic tissues of the anther regulate this process. The gene expression profiles of the microspore/pollen and the sporophytic tapetum are of particular interest. In this study, a microarray technique combined with laser microdissection (44K LM-microarray) was developed and used to characterize separately the transcriptomes of the microspore/pollen and tapetum in rice. Expression profiles of 11 known tapetum specific-genes were consistent with previous reports. Based on their spatial and temporal expression patterns, 140 genes which had been previously defined as anther specific were further classified as male gametophyte specific (71 genes, 51%), tapetum-specific (seven genes, 5%) or expressed in both male gametophyte and tapetum (62 genes, 44%). These results indicate that the 44K LM-microarray is a reliable tool to analyze the gene expression profiles of two important cell types in the anther, the microspore/pollen and tapetum

    DEAD-Box Protein Ddx46 Is Required for the Development of the Digestive Organs and Brain in Zebrafish

    Get PDF
    Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor), a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing

    Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy

    Get PDF
    none67si: Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.This work was supported by Telethon Grant GGP15171 to E.B. and R.D.G. and by a donation from Kobe city to the Department of General Pediatrics, Kobe University Graduate School of Medicine (K550003302). S.C. was supported by a Dutch Cancer Foundation grant (KWF11011). V.C. and A.M. were supported by the Italian Ministry of Health (“Ricerca Corrente” funding). R.D.G. is the recipient of grants from University of Ferrara (FAR and FIR funds).openBonora, Elena; Chakrabarty, Sanjiban; Kellaris, Georgios; Tsutsumi, Makiko; Bianco, Francesca; Bergamini, Christian; Ullah, Farid; Isidori, Federica; Liparulo, Irene; Diquigiovanni, Chiara; Masin, Luca; Rizzardi, Nicola; Cratere, Mariapia Giuditta; Boschetti, Elisa; Papa, Valentina; Maresca, Alessandra; Cenacchi, Giovanna; Casadio, Rita; Martelli, Pierluigi; Matera, Ivana; Ceccherini, Isabella; Fato, Romana; Raiola, Giuseppe; Arrigo, Serena; Signa, Sara; Sementa, Angela Rita; Severino, Mariasavina; Striano, Pasquale; Fiorillo, Chiara; Goto, Tsuyoshi; Uchino, Shumpei; Oyazato, Yoshinobu; Nakamura, Hisayoshi; Mishra, Sushil K; Yeh, Yu-Sheng; Kato, Takema; Nozu, Kandai; Tanboon, Jantima; Morioka, Ichiro; Nishino, Ichizo; Toda, Tatsushi; Goto, Yu-Ichi; Ohtake, Akira; Kosaki, Kenjiro; Yamaguchi, Yoshiki; Nonaka, Ikuya; Iijima, Kazumoto; Mimaki, Masakazu; Kurahashi, Hiroki; Raams, Anja; MacInnes, Alyson; Alders, Mariel; Engelen, Marc; Linthorst, Gabor; de Koning, Tom; den Dunnen, Wilfred; Dijkstra, Gerard; van Spaendonck, Karin; van Gent, Dik C; Aronica, Eleonora M; Picco, Paolo; Carelli, Valerio; Seri, Marco; Katsanis, Nicholas; Duijkers, Floor A M; Taniguchi-Ikeda, Mariko; De Giorgio, RobertoBonora, Elena; Chakrabarty, Sanjiban; Kellaris, Georgios; Tsutsumi, Makiko; Bianco, Francesca; Bergamini, Christian; Ullah, Farid; Isidori, Federica; Liparulo, Irene; Diquigiovanni, Chiara; Masin, Luca; Rizzardi, Nicola; Cratere, Mariapia Giuditta; Boschetti, Elisa; Papa, Valentina; Maresca, Alessandra; Cenacchi, Giovanna; Casadio, Rita; Martelli, Pierluigi; Matera, Ivana; Ceccherini, Isabella; Fato, Romana; Raiola, Giuseppe; Arrigo, Serena; Signa, Sara; Sementa, Angela Rita; Severino, Mariasavina; Striano, Pasquale; Fiorillo, Chiara; Goto, Tsuyoshi; Uchino, Shumpei; Oyazato, Yoshinobu; Nakamura, Hisayoshi; Mishra, Sushil K; Yeh, Yu-Sheng; Kato, Takema; Nozu, Kandai; Tanboon, Jantima; Morioka, Ichiro; Nishino, Ichizo; Toda, Tatsushi; Goto, Yu-Ichi; Ohtake, Akira; Kosaki, Kenjiro; Yamaguchi, Yoshiki; Nonaka, Ikuya; Iijima, Kazumoto; Mimaki, Masakazu; Kurahashi, Hiroki; Raams, Anja; MacInnes, Alyson; Alders, Mariel; Engelen, Marc; Linthorst, Gabor; de Koning, Tom; den Dunnen, Wilfred; Dijkstra, Gerard; van Spaendonck, Karin; van Gent, Dik C; Aronica, Eleonora M; Picco, Paolo; Carelli, Valerio; Seri, Marco; Katsanis, Nicholas; Duijkers, Floor A M; Taniguchi-Ikeda, Mariko; De Giorgio, Robert

    Effects of activity care on sleep-wake patterns of the frail elderly with dementia

    No full text
    本研究は,認知症高齢者の睡眠・覚醒パターンに対するアクティビティケアの効果を検討することを目的に実施した.療養型医療施設に入院していた女性8名を対象に,認知症の特性に応じて立案されたアクティビティケアを週3回30日間実施したところ,コントロール期(介入前30日間)と比較して,1名に夜間最長睡眠持続時間の有意な増加を認め(p<0.05),別の1名に夜間中途覚醒時間の有意な減少を認めた(p<0.05).対象者全体では,有意ではなかったものの,総睡眠時間および夜間最長睡眠持続時間の増加,夜間中途覚醒時間の減少が認められ,アクティビティケアへの参加が認知症高齢者の睡眠・覚醒パターンに好ましい影響を及ぼす可能性があることが示唆された.今後,アクティビティケアによってよりよい睡眠・覚醒パターンへの効果を得るためには,対象者の過去の趣味や生活体験などに関する情報収集,実施期間,実施頻度の検討が必要であると考えられる.The purpose of this study was to examine the effects of activity care on the sleep-wake patterns of the frail elderly with dementia in a long-term care facility. Thirty days' sleep-wake patterns of eight women were examined through sleep logs recorded by nurses or care workers. Programs of activity care appropriate to dementia patients were developed and implemented for thirty days. During this period, sleep-wake patterns of participants were recorded to examine the effects of activity care. For one participant, the period of nighttime uninterrupted sleep increased significantly and for another, nighttime awakening hours decreased significantly during the period. These findings indicate that there are positive effects of activity care on the sleep-wake patterns of the frail elderly with dementia. Obtaining useful data on their hobbies and favorite activities, and considering the term and frequency of the intervention would be important for increasing the effects of activity care

    Effects of activity care on sleep-wake patterns of the frail elderly with dementia

    Get PDF
    本研究は,認知症高齢者の睡眠・覚醒パターンに対するアクティビティケアの効果を検討することを目的に実施した.療養型医療施設に入院していた女性8名を対象に,認知症の特性に応じて立案されたアクティビティケアを週3回30日間実施したところ,コントロール期(介入前30日間)と比較して,1名に夜間最長睡眠持続時間の有意な増加を認め(p<0.05),別の1名に夜間中途覚醒時間の有意な減少を認めた(p<0.05).対象者全体では,有意ではなかったものの,総睡眠時間および夜間最長睡眠持続時間の増加,夜間中途覚醒時間の減少が認められ,アクティビティケアへの参加が認知症高齢者の睡眠・覚醒パターンに好ましい影響を及ぼす可能性があることが示唆された.今後,アクティビティケアによってよりよい睡眠・覚醒パターンへの効果を得るためには,対象者の過去の趣味や生活体験などに関する情報収集,実施期間,実施頻度の検討が必要であると考えられる.The purpose of this study was to examine the effects of activity care on the sleep-wake patterns of the frail elderly with dementia in a long-term care facility. Thirty days' sleep-wake patterns of eight women were examined through sleep logs recorded by nurses or care workers. Programs of activity care appropriate to dementia patients were developed and implemented for thirty days. During this period, sleep-wake patterns of participants were recorded to examine the effects of activity care. For one participant, the period of nighttime uninterrupted sleep increased significantly and for another, nighttime awakening hours decreased significantly during the period. These findings indicate that there are positive effects of activity care on the sleep-wake patterns of the frail elderly with dementia. Obtaining useful data on their hobbies and favorite activities, and considering the term and frequency of the intervention would be important for increasing the effects of activity care
    corecore