121 research outputs found

    Imaging the Surface of a Hand-Colored 19th Century Daguerreotype.

    Get PDF
    Daguerreotypes are valued artifacts that constitute a unique historical photographic memory of the 19th century. Understanding their surface chemistry is important in order to conserve and, when necessary, to restore them. Colored highlights were often added by hand to emphasize different features on the daguerreotype\u27s subjects. In the present work, we report on a daguerreotype that was hand-colored with a red pigment that was added to the cheeks of the two individuals. A series of experiments using micro-Raman and micro-Fourier transform infrared spectroscopy and synchrotron-based X-ray fluorescence microscopy and absorption spectroscopy are used to analyze the surface and to determine the nature of the pigment used as well as the common elements present in the fabrication of the daguerreotypes

    A Nonabelian Yang-Mills Analogue of Classical Electromagnetic Duality

    Get PDF
    The classic question of a nonabelian Yang-Mills analogue to electromagnetic duality is here examined in a minimalist fashion at the strictly 4-dimensional, classical field and point charge level. A generalisation of the abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the abelian theory. For example, there is a dual potential, but it is a 2-indexed tensor TΌΜT_{\mu\nu} of the Freedman-Townsend type. Though not itself functioning as such, TΌΜT_{\mu\nu} gives rise to a dual parallel transport, A~ÎŒ\tilde{A}_\mu, for the phase of the wave function of the colour magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard colour (electric) charge itself is found to be a monopole of A~ÎŒ\tilde{A}_\mu. At the same time, the gauge symmetry is found doubled from say SU(N)SU(N) to SU(N)×SU(N)SU(N) \times SU(N). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a `universal' principle, namely the Wu-Yang (1976) criterion for monopoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov (1980).Comment: We regret that, due to a technical hitch, parts of the reference list were mixed up. This is the corrected version. We apologize to the authors whose papers were misquote

    Effects of Hepatocyte CD14 Upregulation during Cholestasis on Endotoxin Sensitivity

    Get PDF
    Cholestasis is frequently related to endotoxemia and inflammatory response. Our previous investigation revealed a significant increase in plasma endotoxin and CD14 levels during biliary atresia. We therefore propose that lipopolysacharides (LPS) may stimulate CD14 production in liver cells and promote the removal of endotoxins. The aims of this study are to test the hypothesis that CD14 is upregulated by LPS and investigate the pathophysiological role of CD14 production during cholestasis. Using Western blotting, qRT-PCR, and promoter activity assay, we demonstrated that LPS was associated with a significant increase in CD14 and MD2 protein and mRNA expression and CD14 promoter activity in C9 rat hepatocytes but not in the HSC-T6 hepatic stellate cell line in vitro. To correlate CD14 expression and endotoxin sensitivity, in vivo biliary LPS administration was performed on rats two weeks after they were subjected to bile duct ligation (BDL) or a sham operation. CD14 expression and endotoxin levels were found to significantly increase after LPS administration in BDL rats. These returned to basal levels after 24 h. In contrast, although endotoxin levels were increased in sham-operated rats given LPS, no increase in CD14 expression was observed. However, mortality within 24 h was more frequent in the BDL animals than in the sham-operated group. In conclusion, cholestasis and LPS stimulation were here found to upregulate hepatic CD14 expression, which may have led to increased endotoxin sensitivity and host proinflammatory reactions, causing organ failure and death in BDL rats

    Mutations of PIK3CA in gastric adenocarcinoma

    Get PDF
    BACKGROUND: Activation of the phosphatidylinositol 3-kinase (PI3K) through mutational inactivation of PTEN tumour suppressor gene is common in diverse cancer types, but rarely reported in gastric cancer. Recently, mutations in PIK3CA, which encodes the p110α catalytic subunit of PI3K, have been identified in various human cancers, including 3 of 12 gastric cancers. Eighty percent of these reported mutations clustered within 2 regions involving the helical and kinase domains. In vitro study on one of the "hot-spot" mutants has demonstrated it as an activating mutation. METHODS: Based on these data, we initiated PIK3CA mutation screening in 94 human gastric cancers by direct sequencing of the gene regions in which 80% of all the known PIK3CA mutations were found. We also examined PIK3CA expression level by extracting data from the previous large-scale gene expression profiling study. Using Significance Analysis of Microarrays (SAM), we further searched for genes that show correlating expression with PIK3CA. RESULTS: We have identified PIK3CA mutations in 4 cases (4.3%), all involving the previously reported hotspots. Among these 4 cases, 3 tumours demonstrated microsatellite instability and 2 tumours harboured concurrent KRAS mutation. Data extracted from microarray studies showed an increased expression of PIK3CA in gastric cancers when compared with the non-neoplastic gastric mucosae (p < 0.001). SAM further identified 2910 genes whose expression levels were positively associated with that of PIK3CA. CONCLUSION: Our data suggested that activation of the PI3K signalling pathway in gastric cancer may be achieved through up-regulation or mutation of PIK3CA, in which the latter may be a consequence of mismatch repair deficiency

    The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study

    Get PDF
    While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits

    Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants.

    Get PDF
    Most genome-wide methylation studies (EWAS) of multifactorial disease traits use targeted arrays or enrichment methodologies preferentially covering CpG-dense regions, to characterize sufficiently large samples. To overcome this limitation, we present here a new customizable, cost-effective approach, methylC-capture sequencing (MCC-Seq), for sequencing functional methylomes, while simultaneously providing genetic variation information. To illustrate MCC-Seq, we use whole-genome bisulfite sequencing on adipose tissue (AT) samples and public databases to design AT-specific panels. We establish its efficiency for high-density interrogation of methylome variability by systematic comparisons with other approaches and demonstrate its applicability by identifying novel methylation variation within enhancers strongly correlated to plasma triglyceride and HDL-cholesterol, including at CD36. Our more comprehensive AT panel assesses tissue methylation and genotypes in parallel at ∌4 and ∌3 M sites, respectively. Our study demonstrates that MCC-Seq provides comparable accuracy to alternative approaches but enables more efficient cataloguing of functional and disease-relevant epigenetic and genetic variants for large-scale EWAS.This work was supported by a Canadian Institute of Health Research (CIHR) team grant awarded to E.G., A.T., M.C.V. and M.L. (TEC-128093) and the CIHR funded Epigeneome Mapping Centre at McGill University (EP1-120608) awarded to T.P. and M.L., and the Swedish Research Council, Knut and Alice Wallenberg Foundation and the Torsten Söderberg Foundation awarded to L.R. F.A. holds studentship from The Research Institute of the McGill University Health Center (MUHC). F.G. is a recipient of a research fellowship award from the Heart and Stroke Foundation of Canada. A.T. is the director of a Research Chair in Bariatric and Metabolic Surgery. M.C.V. is the recipient of the Canada Research Chair in Genomics Applied to Nutrition and Health (Tier 1). E.G. and T.P. are recipients of a Canada Research Chair Tier 2 award. The MuTHER Study was funded by a programme grant from the Wellcome Trust (081917/Z/07/Z) and core funding for the Wellcome Trust Centre for Human Genetics (090532). TwinsUK was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. T.D.S. is a holder of an ERC Advanced Principal Investigator award. SNP genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. Finally, we thank the NIH Roadmap Epigenomics Consortium and the Mapping Centers (http://nihroadmap.nih.gov/epigenomics/) for the production of publicly available reference epigenomes. Specifically, we thank the mapping centre at MGH/BROAD for generation of human adipose reference epigenomes used in this study.This is the final version. It was first published by NPG at http://www.nature.com/ncomms/2015/150529/ncomms8211/full/ncomms8211.html#abstrac

    The Lysosome and Intracellular Signalling.

    Get PDF
    In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed

    KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1

    Get PDF
    The mechanistic target of rapamycin complex 1 kinase (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy1–3. Amino acids are a key input, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation4. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RagA, and GATOR2, a positive regulator of unknown molecular function. Here, we identify a four-membered protein complex (KICSTOR) composed of the KPTN, ITFG2, C12orf66, and SZT2 gene products as required for amino acid or glucose deprivation to inhibit mTORC1 in cultured cells. In mice lacking SZT2, mTORC1 signaling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds to GATOR1 and recruits it, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Interestingly, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signaling5–10. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signaling that, like GATOR1, is mutated in human disease11,12

    The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    Get PDF
    To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation
    • 

    corecore