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Abstract In this paper we constructed superloop space
duality for a four dimensional supersymmetric Yang–Mills
theory with N = 1 supersymmetry. This duality reduces to
the ordinary loop space duality for the ordinary Yang–Mills
theory. It also reduces to the Hodge duality for an abelian
gauge theory. Furthermore, the electric charges, which are
the sources in the original theory, appear as monopoles in the
dual theory. Whereas, the magnetic charges, which appear as
monopoles in the original theory, become sources in the dual
theory.

1 Introduction

An important concept in the electromagnetism is the exis-
tence of the Hodge duality. The symmetry and topologi-
cal concepts inherent in field theories have been analysed
using this duality [1–4]. In fact, this duality has been thor-
oughly studied and many interesting physical consequences
arising from this duality have also been analysed [5–13].
It is known that electrodynamics is dual under Hodge star
operation, ∗Fμν = −εμντρFμν/2. This is because the field
tensor for pure electrodynamics, Fμν = ∂ν Aμ − ∂μAν ,
satisfies, ∂νFμν = 0. This field tensor also satisfies the
Bianchi identity, ∂ν∗Fμν = 0. This field equation for pure
electrodynamics can be interpreted as the Bianchi identity
for ∗Fμν , because the Hodge star operation is reflexive,
∗(∗Fμν) = −Fμν . So, we can express ∗Fμν , in terms of a
dual potential, Ã, such that ∗Fμν = ∂ν Ãμ − ∂μ Ãν . It has
also been known that the existence of magnetic monopoles
is equivalent to (electric) charge quantization which in turn
is equivalent to the electromagnetic gauge group being com-
pact (i. e. U (1)) [14]. However, a non-abelian version of this
duality and its consequences for non-abelian monopoles can
only be analysed in the framework of loop space [15,16].
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For Yang–Mills theory, the field tensor, Fμν = ∂ν Aμ −
∂μAν + ig[Aμ, Aν], again satisfies, DνFμν = 0, where
Dμ = ∂μ − igAμ is the covariant derivative. It also satisfies
the Bianchi identity, Dν∗Fμν = 0. However, now this does
not imply the existence of a dual potential because the covari-
ant derivative in the Bianchi identity involves the potential
Aμ and not some dual potential Ãμ, appropriate to ∗Fμν = 0.
In fact, it has been demonstrated that in certain cases no such
solution for such a dual potential exist even for the ordinary
Yang–Mills theory [15,16]. Thus, the Yang–Mills theory is
not dual under the Hodge star operation. However, it is pos-
sible to construct a generalized duality transformation for
the ordinary Yang–Mills theory in the loop space, such that
for the abelian case, it reduces to the Hodge star operation
[17,18].

This duality has been used for studding ’t Hooft’s
order-disorder parameters [19]. For any two spatial loops
C and C ′ with the linking number n between them,
and the gauge symmetry generated by the gauge group
su(N ), the order-disorder parameters satisfy, A(C)B(C ′) =
B(C ′)A(C)exp(2π in/N ). The magnetic flux through C is
measured by A(C). So, it also creates an electric flux alongC
and is thus expressed in terms of the potential Aμ. However,
B(C) measures the electric flux through C , and thus creates
magnetic flux along C . So, it can only be expressed in terms
of the dual potential Ãμ [20,21]. A Dualized Standard Model
has also been constructed using this duality [20–26]. In the
Standard Model the fermions of the same type but different
generations have widely different masses. The CKM matrix
is also not an identity matrix and the off-diagonal elements of
the CKM matrix vary in different magnitude [27]. These facts
can be explained using the Dualized Standard Model [28,29].
In fact, even the Neutrino oscillations [30], and the Lepton
transmutations [31], have been studied in the Dualized Stan-
dard Model. Polyakov loops have been used for deriving this
duality in non-abelian gauge theories [32]. In mathemati-
cal language Polyakov loops are the holonomies of closed
loops in space-time. In fact, in the physics literature they are
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called Dirac phase factors. Even though they are defined via
parameterized loops in space-time, they are independent of
the parameterization chosen. They are gauge group-valued
functions of the infinite-dimensional loop space. The main
difference between a Polyakov loop and a Wilson loop is
that in the Wilson loop a trace is taken and no such trace is
taken in the Polyakov loop [32]. Thus, the Polyakov loops
are by definition elements of the gauge group. It may be
noted that Wilsons loops for super-Yang–Mills theory with
N = 4 supersymmetry has also been constructed in super-
space formalism [33]. The Polyakov loops for three and
four dimensional supersymmetric Yang–Mills theories with
N = 1 supersymmetry have also been studied [34,35]. In
this paper we will derive a supersymmetric duality for the
four dimensional supersymmetric Yang–Mills theory in the
Wess–Zumino gauge.

2 Superloop space

In four dimensional gauge theories withN = 1 supersymme-
try, we can construct a covariant derivative ∇A = DA − i�A,
where DA = (∂aȧ, Da, Dȧ) and �A = (�aȧ, �a, �ȧ) [36].
Furthermore, the Bianchi identity can now be written as
[∇[A, HBC)} = 0, where HAB = [∇A,∇B} = TC

AB∇C −
i FAB . Thus, again for a supersymmetric Yang–Mills theory,
no dual potential can be constructed. However, as it is pos-
sible to derive a duality for the ordinary Yang–Mills theory
in loop space, we will derive a duality a supersymmetric
Yang–Mills theory in superloop space formalism. We will
derive our results in Wess–Zumino gauge, and impose the
constraint Faȧ = Fab = Fȧḃ = 0. Now can we define
ξ(s) = (σμξμ(s))aȧθaθȧ + ξa(s)θa + ξ ȧ(s)θȧ , and so we
have ξ A = (ξaȧ, ξa, ξ ȧ) [36]. We have to used this parame-
terization of the superloop space as we are analysing a the-
ory with N = 1 supersymmetry in four dimensions [35].
This is because for a four dimensional gauge theory with
N = 1 supersymmetry, the gauge fields can be obtained from
a super-connection which is given by �A = (�aȧ, �a, �ȧ).
The superloop space is constructed to analyse this theory,
and so we have chosen this particular form of parameterized.
It may be noted that if had considered supersymmetric theo-
ries with higher amount of supersymmetry, we would have to
take additional Grassmann coordinates into consideration. In
fact, Wilsons loops for such theories have been constructed
by taking these extra Grassmann coordinates into consider-
ation [33]. This would also occur if we were constructing
superloop space in higher dimensions. Furthermore, it has
been demonstrated that three dimensional superloop space
requires a small number of Grassmann coordinates [34]. The
superloop can now be parameterized by ξ A = (ξaȧ, ξa, ξ ȧ),
along a curve C ,

C : {ξ A(s) : s = 0 → 2π, ξ A(0) = ξ A(2π)}, (1)

where ξ A(0) = ξ A(2π) is a fixed point on this curve. The
space of all such super-functions parameterizes the super-
loop space. A functional on this superloop space can be con-
structed as [35]

�[ξ ] = Ps exp i
∫ 2π

0

[
�aȧ(ξ(s))

dξaȧ(s)

ds

+�a(ξ(s))
dξa(s)

ds
+ �ȧ(ξ(s))

dξȧ(s)

ds

]

= Ps exp i
∫ 2π

0
�A(ξ(s))

dξA(s)

ds
. (2)

here Ps denotes ordering in s increasing from right to left
and the derivative in s is taken from below. This loop space
variable is a scalar superfield from the supersymmetric point
of view, and can be projected to component superloops. In
particular, we have [�[ξ ]]| = φ[ξ ], which in Wess–Zumino
gauge is given by

φ[ξ ] = Ps exp i
∫ 2π

0
Aμ(ξ(s))

dξμ(s)

ds
. (3)

We can also define the parallel transport from a point ξ(s1)

to ξ(s2) along path parametrized by ξ as

�[ξ : s1, s2] = Ps exp i
∫ s2

s1

�A(ξ(s))
dξA

ds
(4)

Now using �[ξ ], we can define a gauge Lie algebra valued
FA[ξ |s] as

FA[ξ |s] = i�−1[ξ ]δA(s)�[ξ ]
= �−1[ξ : s, 0]H AB(ξ(s))�[ξ : s, 0]dξB(s)

ds
, (5)

where δA(s) = δ/δξ A(s) = (δ/δξaȧ(s), δ/δξa(s), δ/δξ ȧ

(s))). Here we first followed a path to s and then turn back-
wards along the same path. Thus, the phase factor for the
segment of the superloop beyond s did not contribute and
H AB(ξ(s)) was obtained because of the infinitesimal circuit
generated at s.

It is convenient at this stage to define a functional curl and
a functional divergence for these superloop space variables
as

(curl F[ξ |s])AB = δA(s)FB[ξ |s] − δB(s)FA[ξ |s],
div F[ξ |s] = δA(s)FA[ξ |s]. (6)

These superloop variables are highly redundant and have to
be constrained by an infinite set of conditions which can be
expressed by the vanishing of the superloop space curvature
[35],GAB[ξ, s] = (curl F[ξ |s])AB+i[FA[ξ |s], FB[ξ |s]] = 0.
Now we construct EA[ξ |s] from FA[ξ |s] as follows,
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EA[ξ |s] = �[ξ : s, 0]FA[ξ |s]�−1[ξ : s, 0], (7)

So, EA[ξ |s] is obtained from a parallel transport of FA[ξ |s].
Thus, EA[ξ |s] depends only on a segment of the loop ξ(s)
around s and is therefore a segmental variable rather than
a full loop variable. However, when this segment shrinks to
a point, we have E A[ξ |s] → H AB(ξ(s))dξB(s)/ds. This
limit has to be taken only after all the loop operations such as
loop differentiation has been performed. This is because all
these loop operations require a segment of the loop on which
they can operate. Now we can define a functional curl and a
functional divergence for EA[ξ |s] as

(curl E[ξ |s])AB = δA(s)EB[ξ |s] − δB(s)EA[ξ |s],
div E[ξ |s] = δA(s)EA[ξ |s]. (8)

We first note that

δA(s′)EB[ξ |s] = �[ξ : s, 0][δA(s′)FB[ξ |s]
+ i�(s − s′)[FA[ξ |s],
× FB[ξ |s]]]�−1[ξ : s, 0], (9)

where i�(s− s′) is the Heavisde function. So, the superloop
space curvature can now be written as GAB[ξ, s] = �[ξ :
s, 0](curlE[ξ |s])AB�−1[ξ : s, 0] and thus the constraints
can be fixed as (curlE[ξ |s])AB = 0.

3 Duality

For ordinary gauge theories, it is possible to construct a
duality using loop space formalism, such that it reduces
to the Hodge star operation for the abelian case [17,18].
In this section we will further generalize this duality from
a ordinary Yang–Mills theory to a supersymmetric Yang–
Mills theory. In order to achieve this we define a new vari-
able ẼA[η|t] which is dual to EA[ξ |s]. Here η is another
parameter loop which is parameterized by t , and η(t) =
(σμημ(t))aȧθaθȧ + ηa(t)θa + η(t)ȧθȧ . We have used a dif-
ferent labels for the parameters of the superloop space, i.e.,
t and η(t) instead of s and ξ(s) to distinguish the parame-
ters that parameterizing the dual superloop space from the
parameters that parameterizing the original superloop space.
So, the parameters t and η(t) parameterizing the dual super-
loop space and the parameters s and ξ(s) parameterizing the
original superloop space. This dual variable is constructed as
follows,

ω−1[η(t)]Ẽ A[η|t]ω[η(t)] = − 2

N
εABCD dηB(t)

dt

×
∫

DξdsEC [ξ |s]dξD(s)

ds

×
[
dξ F (s)

ds

dξF (s)

ds

]−2

δ(ξ(s) − η(t)), (10)

where N is a normalization constant. In the tensor εABCD ,
the variables A, B,C, D take all the possible spinor values
i.e., A = (aȧ, a, ȧ), B = (bḃ, b, ḃ),C = (cċ, c, ċ), D =
(dḋ, d, ḋ). Here ω[η(t)] is a local rotational matrix which
accounts for transforming the quantities from a direct frame
to the dual frame. In the integral EC [ξ |s] depends on a little
segment from s− to s+, such that the limit ε → 0 is taken only
after integration, where ε = s+ −s−. As we may need to cal-
culate the loop derivative of Ẽ A[η|t], so we regard Ẽ A[η|t]
as a segmental quantity depending on a segment from t− to
t+ and only after differentiation the limit ε′ → 0 is taken,
where ε′ = t+−t−. This limit is taken before the limit ε → 0
for the integral. Thus, we can take ε′ < ε, and the δ-function
now ensures that ξ(s) coincides from s = t− to s = t+
with η(t). After the limit is taken and the segment shrinks
to a point, we have E A[η|t] → H̃ AB(η(t))dηB(t)/dt . Here
H̃ AB can be constructed from a dual potential. Thus, this
superloop space duality implies the existence of a dual poten-
tial �̃A = (�̃aȧ, �̃a, �̃ȧ), such that [∇̃A, ∇̃B} = H̃AB where
∇̃A = DA − i �̃A.

It may be noted that if we used [�[ξ ]]| = φ[ξ ] as the
loop space variable, then this duality would reduce to the
ordinary duality for the ordinary Yang–Mills fields. So, if we
use [�[ξ ]]| = φ[ξ ] as the loop space variable, then we can
construct Eμ[ξ |s] from Fμ[ξ |s], where Fμ[ξ |s] is the loop
space connection corresponding to loop variable [�[ξ ]]| =
φ[ξ ], in the Wess–Zumino gauge. Then Ẽμ[η|t], which is
dual to Eμ[ξ |s], is given by

ω−1[η(t)]Ẽμ[η|t]ω[η(t)]
= − 2

N
εμντρ dην(t)

dt

∫
DξdsEτ [ξ |s]dξρ(s)

ds

×
[
dξσ (s)

ds

dξσ (s)

ds

]−2

δ(ξ(s) − η(t)), (11)

If we let the segmental width of Ẽμ[η|t] go to zero, then we
can write

ω−1[x]F̃μν[x]ω[x] = − 2

N
εμντρ

∫
DξdsEτ [ξ |s]dξρ(s)

ds

×
[
dξσ (s)

ds

dξσ (s)

ds

]−2

δ(x − ξ(s)),

(12)

Here we first do the integration before taking the limit to zero.
Thus, in the abelian case, when we take the limit ε → 0, we
obtain [18]

F̃μν[x] = − 2

N
εμντρ

∫
DξdsFτλ[ξ(s)]dξλ(s)

ds

dξρ(s)

ds

×
[
dξσ (s)

ds

dξσ (s)

ds

]−2

δ(x − ξ(s))

= −1

2
εμντρFτρ[x]. (13)
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Now identifying F̃μν with ∗Fμν , we obtain the Hodge star
operation for ordinary electrodynamics. Thus, for the ordi-
nary abelian gauge theory, this duality reduces to the usual
Hodge duality.

4 Sources and monopoles

We will shown in this section that this duality in the superloop
space transforms the electric charges, which are the sources
in the original theory, into monopoles in the dual theory. It
also transforms the magnetic charges, which are monopoles
in the original theory, into sources in the dual theory. In order
to prove this result, it is useful to first show that this dual-
ity is invertible. This can be demonstrated by first defining
E A[ζ |u] as,

ω−1[ζ(u)]E A[ζ |u]ω[ζ(u)]
= − 2

N
εABCD dζB(u)

du

∫
Dηdt ẼC [η|t]dηD(t)

dt

×
[
dηF (t)

dt

dηF (t)

dt

]−2

δ(η(t) − ζ(u)), (14)

where ζB(u) is a new loop parameterized by u. Now we
define AA[ζ(u)] as

AA[ζ(u)] = 2

N
εABCD dζB(u)

du

∫
Dηdtω−1[η(t)]ẼC [η|t]ω[η(t)]

×dηD(t)

dt

[
dηF (t)

dt

dηF (t)

dt

]−2

δ(η(t) − ζ(u))

= − 4

N
εABCD dζB(u)

du

∫
DηDξdtds

dηD(t)

dt

dηQ(t)

dt

×
[
dηX (t)

dt

dηX (t)

dt

]−2

δ(η(t) − ζ(u))EW [ξ |s]

×dξ E (s)

ds

[
dξY (s)

ds

dξY (s)

ds

]−2

δ(ξ(s) − η(t))εCQWE .

(15)

Thus, we obtain,

ω−1[ζ(u)]E A[ζ |u]ω[ζ(u)]
= − 2

N
εABCD dζB(u)

du

∫
Dηdt ẼC [η|t]dηD(t)

dt

×
[
dηF (t)

dt

dηF (t)

dt

]−2

δ(η(t) − ζ(u)). (16)

Now identifying ζ(u) with ξ(s), we obtain the desired result
that this duality is invertible. Now if we compare Eq. (10)
to Eq. (16), we observe that Eq. (10) transforms the original
superloop space variable to the dual superloop variable, and
Eq. (16) inverts that transformation, transforming the dual
superloop variable to the original superloop space variable.
Hence, this transformation is invertible.

The color electric charge is the source term in the super-
symmetric Yang–Mills theory. Thus, it can be defined as
the non-vanishing of ∇C HBC . Alternately, it can also be
defined as the non-vanishing of divF[ξ |s]. Furthermore, as
divE[ξ |s] = �[ξ : s1, 0]divF[ξ |s]]�−1[ξ : s1, 0], so
the color electric charge can also be defined as the non-
vanishing of divE[ξ |s]. Similarly, as the color magnetic
charge is a monopole in the supersymmetric Yang–Mills
theory, it is characterized by non-vanishing of GAB[ξ, s].
So, the color magnetic charge can be defined as the non-
vanishing of (curlE[ξ |s])AB . A monopole in the dual theory
is also characterized by non-vanishing of (curlẼ[η|t])AB ,
and a source in the dual theory is defined as the non-
vanishing of divẼ[η|t]. So, under the duality transforma-
tion a electric charge in the original theory should appear
as a magnetic monopole in the dual theory. So, the non-
vanishing of divE[ξ |s] should imply the non-vanishing of
(curlẼ[η|t])AB . Furthermore, a magnetic monopole in the
original theory should appear as the source term in the
dual theory. So, the non-vanishing of (curlE[ξ |s])AB should
imply the non-vanishing of divẼ[η|t]. Now as η(t) coincides
with ξ(s) from s = t− to s = t+, so we can write

δ

δηM (t)

(
ω−1[η(t)]Ẽ A[η|t]ω[η(t)]

)
εMAN P

= − 2

N
εABCD dηB

dt

∫
Dξds

δEC [ξ |s]
δξM (s)

dξD

ds

×
[
dξ F

ds

dξF

ds

]−2

δ(ξ(s) − η(t))εMAN P . (17)

Here we have performed the integration by parts with
respect to Dξ . This expression can be simplified to the fol-
lowing expression,
(
ω−1[η(t)](curlẼ[η|t]ABω[η(t)]

)

= − 1

N

∫
DξdsAAB(t, s)divE[ξ |s]

×
[
dξ F

ds

dξF

ds

]−2

δ(ξ(s) − η(t)), (18)

where

AAB(t, s) =
[
dηC (t)

dt

dξ D(s)

ds
− dηD(t)

dt

dξC (s)

ds

]
εABCD .

(19)

Now if divE[ξ |s] = 0, then (curlẼ[η|t])AB = 0. As the
duality is invertible, we can also show that if divẼ[ξ |s] = 0,
then (curlE[η|t])AB = 0. So, an electric charge which is a
source in the original theory appears as a monopole in the
dual theory, and magnetic charge which is a source in the
dual theory appears as a monopole in the original theory.
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5 Conclusion

In this paper we have analysed a four dimensional pure
Yang–Mills theory with N = 1 supersymmetry in super-
loop space formalism. We have constructed a generalized
duality in superloop space, for this theory. Under this gen-
eralized duality transformation the electric charges which
appear as sources in the original theory become monopoles
in the dual theory. Furthermore, the magnetic charges which
appear monopoles in the original theory become sources in
the dual theory. This duality reduces to the ordinary loop
space duality for ordinary Yang–Mills theory. As the loop
space duality for ordinary Yang–Mills theory reduces to the
Hodge star operation in the abelian case, so, this general-
ized duality transformation also reduces to the Hodge star
operation for ordinary electrodynamics.

It may be noted that the existence of a duality for ordi-
nary Yang–Mills theory has many interesting physical con-
sequences [21–29]. It will be interesting to construct a super-
symmetric version of these results using the results of this
paper. Thus, the results of this paper can be used to construct
a supersymmetric Dualized Standard Model. It will also be
interesting to analyse the phenomenological consequences of
this model. The supersymmetric Standard Model contains a
supersymmetric matter action coupled to the supersymmetric
gauge theory. Thus, we will need to couple a supersymmet-
ric matter action to the supersymmetric gauge theory, and
then use this formalism to construct a supersymmetric Dual-
ized Standard Model. In particular, we expect to have a dual
symmetry corresponding to the super-gauge symmetries of
the supersymmetric Standard Model. It will also be interest-
ing to generalize the results of this paper to theories with
greater amount of supersymmetry. The results obtained in
this paper can also be used for analysing monopoles in the
ABJM theory [37]. It may be noted that the supersymmetry
of the ABJM theory is expected to get enhanced because of
monopole operators [38,39]. Thus, the formalism developed
in this paper could find application in the supersymmetry
enhancement of the ABJM theory.
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