3 research outputs found

    Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study

    Get PDF
    Objective We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). Research Design and Methods 732 recently diagnosed T2D patients from the IMI-DIRECT study were extensively phenotyped over three years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS) and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. Results Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS, and increasing CLIm; visceral or liver fat, HDL-cholesterol and triglycerides had further independent, though weaker, roles (R2=0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from AUROC=0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS and CLIm was relatively stable (odds ratios 0.07 to 0.09). T2D polygenic risk score and baseline pancreatic fat, GLP-1, glucagon, diet, and physical activity did not show an independent role. Conclusions Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of T2D patients in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression

    Stepwise activities of mSWI/SNF family chromatin remodeling complexes direct T cell activation and exhaustion

    No full text
    Highly coordinated changes in gene expression underlie T cell activation and exhaustion. However, the mechanisms by which such programs are regulated and how these may be targeted for therapeutic benefit remain poorly understood. Here, we comprehensively profile the genomic occupancy of mSWI/SNF chromatin remodeling complexes throughout acute and chronic T cell stimulation, finding that stepwise changes in localization over transcription factor binding sites direct site-specific chromatin accessibility and gene activation leading to distinct phenotypes. Notably, perturbation of mSWI/SNF complexes using genetic and clinically relevant chemical strategies enhances the persistence of T cells with attenuated exhaustion hallmarks and increased memory features in vitro and in vivo. Finally, pharmacologic mSWI/SNF inhibition improves CAR-T expansion and results in improved anti-tumor control in vivo. These findings reveal the central role of mSWI/SNF complexes in the coordination of T cell activation and exhaustion and nominate small-molecule-based strategies for the improvement of current immunotherapy protocols

    Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity

    Get PDF
    Context: Pancreatic beta-cell glucose sensitivity is the slope of the plasma glucose-insulin secretion relationship and is a key predictor of deteriorating glucose tolerance and development of type 2 diabetes. However, there are no large-scale studies looking at the genetic determinants of beta-cell glucose sensitivity. Objective: To understand the genetic determinants of pancreatic beta-cell glucose sensitivity using genome-wide meta-analysis and candidate gene studies. Design: We performed a genome-wide meta-analysis for beta-cell glucose sensitivity in subjects with type 2 diabetes and nondiabetic subjects from 6 independent cohorts (n = 5706). Beta-cell glucose sensitivity was calculated from mixed meal and oral glucose tolerance tests, and its associations between known glycemia-related single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) SNPs were estimated using linear regression models. Results: Beta-cell glucose sensitivity was moderately heritable (h2 ranged from 34% to 55%) using SNP and family-based analyses. GWAS meta-analysis identified multiple correlated SNPs in the CDKAL1 gene and GIPR-QPCTL gene loci that reached genome-wide significance, with SNP rs2238691 in GIPR-QPCTL (P value = 2.64 x 10(-9)) and rs9368219 in the CDKAL1 (P value = 3.15 x 10(-9)) showing the strongest association with beta-cell glucose sensitivity. These loci surpassed genome-wide significance when the GWAS meta-analysis was repeated after exclusion of the diabetic subjects. After correction for multiple testing, glycemia-associated SNPs in or near the HHEX and IGF2B2 loci were also associated with beta-cell glucose sensitivity. Conclusion: We show that, variation at the GIPR-QPCTL and CDKAL1 loci are key determinants of pancreatic beta-cell glucose sensitivity.Peer reviewe
    corecore