163 research outputs found

    Root rot diseases of sugarbeet (Beta vulgaris L) as affected by defloliation intensity

    Get PDF
    The aim of this work was to study the effect of sugar beet re-growth after water stress defoliation on root rots of three cultivars (Europa, Rival Corsica), which were spring sown in Thessaly, central Greece, for two growing seasons (2003-04). At the beginning of July, sugar beets were subjected to water deficit with irrigation withholding. A month later, three defoliation levels (control - C, moderate - MD, severe - SD) and irrigation were applied. Thus, sugar beets were forced to re-grow and three harvests (15, 30 and 40 days after defoliation - DAD) were conducted. Rotted roots per hectare were counted and pathogens were identified. Data were analyzed as a four-factor randomized complete block design with years, defoliation levels, sampling times and cultivars as main factors. The number of rotted roots was increased with the defoliation level and was significantly higher for SD sugar beets (3748 roots ha–1). No significant differences were found between C and MD treatments (1543 and 2116 roots ha–1, respectively). Rival was the most susceptible cultivar to root rots. Sugar beets were more susceptible to rotting 15 and 40 DAD (2778 and 2998 roots ha–1). The causal agents of root rots were the fungi, Fusarium spp., Rhizopus stolonifer, Macrophomina phaseolina and Rhizoctonia solani

    Effect of defoliation on leaf physiology of sugar beet cultivars subjected to water stress and re-watering

    Get PDF
    Abstract Water stress causes defoliation, which can reduce yield and root quality of sugar beets (Beta vulgaris L.) through altered gas exchange characteristics of the leaves. In a two-year experiment, three sugar beet cultivars (Europa, Rival and Corsica) were subjected to three defoliation levels (control-C, moderate-MD, severe-SD) and re-watering after their exposition to drought for a month. Leaf physiological traits including net photosynthesis (A), transpiration rate (E), stomatal conductance (g s ), intracellular CO 2 (C i ), water use efficiency (WUE L -A/E and WUE i -A/g s ), leaf N concentration, petiole NO 3 -N concentration, specific leaf area (SLA), leaf water potential (WP) and leaf water content (LWC), were determined before defoliation and 15, 30 and 40 days after defoliation (DAD). On contrary to previous reports, water-stressed cultivars differed significantly in their leaf physiology; the late-season cultivar Corsica had the lowest E and g s values without any significant reduction in A. Thus, Corsica was the most water-conservative cultivar. Re-watering rapidly restored leaf physiology but a gradual decline, with the progress of DAD, was evident for A, E, g s and C i . After re-growth, cultivars differed only in WP and LWC with Europa, the early-harvested cultivar, to have the highest values. Thus, the better response (higher yield increase and lower root quality degradation) of Corsica to re-watering and the subsequent re-growth, as reported b

    Potential interference of aluminum chlorohydrate with estrogen receptor signaling in breast cancer cells

    Get PDF
    Aluminum salts are widely used as the active antiperspirant in underarm cosmetic. Experimental observations indicate that its long term application may correlate with breast cancer development and progression. This action is proposed to be attributed, among others, to aluminum possible estrogen-like activities. In this study we showed that aluminum, in the form of aluminum chlorohydrate (ACH), caused increase in estrogen receptor alpha (ERα) protein levels, in ERα-positive MCF-7 cells. This effect was accompanied by moderate activation of Estrogen Response Elements (ERE)-driven reporter gene expression and 20%-50% increase in certain estrogen responsive, ERE-independent genes expression. Genes affected were ERα, p53, cyclin D1, and c-fos, crucial regulators of breast cancer development and progression. ACH-induced genes expression was eliminated in the presence of the estrogen antagonist: ICI 182780, in MCF-7 cells, whereas it was not observed in ERα-negative MDA-MB-231 breast cancer cells, indicating aluminum interference with estrogen signaling. Moreover, ACH caused increase in the perinuclear localization of estrogen receptor alpha in MCF-7 breast cancer cells and increase in the mitochondrial Bcl-2 protein, possibly affecting receptors-mediated mitochondrial actions and mitochondrial-dependent apoptosis. ACH-induced perinuclear localization of estrogen receptor beta was also observed in MDA-MB-231. Our findings indicate that aluminum actions on estrogen receptors protein level and subcellular localization possibly affect receptors-mediated actions and thus, aluminum interference with estrogen signaling

    Potential Dissociative Glucocorticoid Receptor Activity for Protopanaxadiol and Protopanaxatriol

    Get PDF
    Glucocorticoids are steroid hormones that regulate inflammation, growth, metabolism, and apoptosis via their cognate receptor, the glucocorticoid receptor (GR). GR, acting mainly as a transcription factor, activates or represses the expression of a large number of target genes, among them, many genes of anti-inflammatory and pro-inflammatory molecules, respectively. Transrepression activity of glucocorticoids also accounts for their anti-inflammatory activity, rendering them the most widely prescribed drug in medicine. However, chronic and high-dose use of glucocorticoids is accompanied with many undesirable side effects, attributed predominantly to GR transactivation activity. Thus, there is a high need for selective GR agonist, capable of dissociating transrepression from transactivation activity. Protopanaxadiol and protopanaxatriol are triterpenoids that share structural and functional similarities with glucocorticoids. The molecular mechanism of their actions is unclear. In this study applying induced-fit docking analysis, luciferase assay, immunofluorescence, and Western blot analysis, we showed that protopanaxadiol and more effectively protopanaxatriol are capable of binding to GR to activate its nuclear translocation, and to suppress the nuclear factor-kappa beta activity in GR-positive HeLa and HEK293 cells, but not in GR-low level COS-7 cells. Interestingly, no transactivation activity was observed, whereas suppression of the dexamethasone-induced transactivation of GR and induction of apoptosis in HeLa and HepG2 cells were observed. Thus, our results indicate that protopanaxadiol and protopanaxatriol could be considered as potent and selective GR agonist

    Genetic diversity and physiological performance of portuguese wils beet (Beta vulgaris spp. maritima) from three contrasting habitats

    Get PDF
    The establishment of stress resilient sugar beets (Beta vulgaris spp. vulgaris) is an important breeding goal since this cash crop is susceptible to drought and salinity. The genetic diversity in cultivated sugar beets is low and the beet wild relatives are useful genetic resources for tolerance traits. Three wild beet populations (Beta vulgaris spp. maritima) from contrasting environments, Vaiamonte (VMT, dry inland hill), Comporta (CMP, marsh) and Oeiras (OEI, coastland), and one commercial sugar beet (Isella variety, SB), are compared. At the genetic level, the use of six microsatellite allowed to detect a total of seventy six alleles. It was observed that CMP population has the highest value concerning the effective number of alleles and of expected heterozygosity. By contrast, sugar beet has the lowest values for all the parameters considered. Loci analysis with STRUCTURE allows defining three genetic clusters, the sea beet (OEI and CMP), the inland ruderal beet (VMT) and the sugar beet (SB). A screening test for progressive drought and salinity effects demonstrated that: all populations were able to recover from severe stress; drought impact was higher than that from salinity; the impact on biomass (total, shoot, root) was population specific. The distinct strategies were also visible at physiological level. We evaluated the physiological responses of the populations under drought and salt stress, namely at initial stress stages, late stress stages, and early stress recovery. Multivariate analysis showed that the physiological performance can be used to discriminate between genotypes, with a strong contribution of leaf temperature and leaf osmotic adjustment. However, the separation achieved and the groups formed are dependent on the stress type, stress intensity and duration. Each of the wild beet populations evaluated is very rich in genetic terms (allelic richness) and exhibited physiological plasticity, i.e., the capacity to physiologically adjust to changing environments. These characteristics emphasize the importance of the wild beet ecotypes for beet improvement programs. Two striking ecotypes are VMT, which is the best to cope with drought and salinity, and CMP which has the highest root to shoot ratio. These genotypes can supply breeding programs with distinct goalsinfo:eu-repo/semantics/publishedVersio

    The druggability of the ATP binding site of glycogen phosphorylase kinase probed by coumarin analogues

    Get PDF
    Glycogen phosphorylase kinase (PhK) converts by phosphorylation, the inactive glycogen phosphorylase (GPb) into active GPa in the glycogenolytic pathway. It is a complex enzyme comprising of the catalytic (γ) and three regulatory subunits (α, β, δ) forming a hexadecamer with stoichiometry (αβγδ)4. Several studies have indicated PhK as a promising target for the development of antihyperglycemics as its inhibition blocks glycogenolysis in liver and a potential therapeutic target for cancer against pathological angiogenesis and tumor progression. The identification of compounds that inhibit the kinase through their direct binding to its catalytic site is an effective approach to identify bioactive molecules of therapeutic significance. Towards this, the structure of the N-terminal kinase domain (residues 1–298) of the catalytic γ subunit of PhK (PhKγtrnc) has been determined by X-ray crystallography while staurosporine and indirubin analogues have been characterized as potent inhibitors targeting the ATP binding site. In this study, a series of 38 synthetic analogues of naturally occurring coumarins were screened for inhibition of PhKγtrnc, in vitro, using a photometric assay. The IC50 values of the two most potent compounds were determined for PhKγtrnc and the pharmacologically relevant target, human liver isoform (PHKG2A). Their cellular efficacy and toxicity in HepG2 cells were further assessed ex vivo. Docking experiments and the structural comparison with previously described inhibitors reveal the binding mode of the coumarin scaffold at a no hinge region of the ATP site of PhK and the role of a conserved β3-Lys in binding. The experimental findings provide structural insights with implications to the kinase targeting and drug design
    corecore