1,643 research outputs found
Radiative diffusivity factors in cirrus and stratocumulus clouds: Application to two-stream models
A diffusion-like description of radiative transfer in clouds and the free atmosphere is often used. The two stream model is probably the best known example of such a description. The main idea behind the approach is that only the first few moments of radiance are needed to describe the radiative field correctly. Integration smooths details of the angular distribution of specific intensity and it is assumed that the closure parameters of the theory (diffusivity factors) are only weakly dependent on the distribution. The diffusivity factors are investigated using the results obtained from both Stratocumulus and Cirrus phases of FIRE experiment. A new theoretical framework is described in which two (upwards and downwards) diffusivity factors are used and a detailed multistream model is used to provide further insight about both the diffusivity factors and their dependence on scattering properties of clouds
A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR
To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects
Don't bleach chaotic data
A common first step in time series signal analysis involves digitally
filtering the data to remove linear correlations. The residual data is
spectrally white (it is ``bleached''), but in principle retains the nonlinear
structure of the original time series. It is well known that simple linear
autocorrelation can give rise to spurious results in algorithms for estimating
nonlinear invariants, such as fractal dimension and Lyapunov exponents. In
theory, bleached data avoids these pitfalls. But in practice, bleaching
obscures the underlying deterministic structure of a low-dimensional chaotic
process. This appears to be a property of the chaos itself, since nonchaotic
data are not similarly affected. The adverse effects of bleaching are
demonstrated in a series of numerical experiments on known chaotic data. Some
theoretical aspects are also discussed.Comment: 12 dense pages (82K) of ordinary LaTeX; uses macro psfig.tex for
inclusion of figures in text; figures are uufile'd into a single file of size
306K; the final dvips'd postscript file is about 1.3mb Replaced 9/30/93 to
incorporate final changes in the proofs and to make the LaTeX more portable;
the paper will appear in CHAOS 4 (Dec, 1993
Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation
The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas
Boundary Conditions for the Diffusion Equation in Radiative Transfer
Using the method of images, we examine the three boundary conditions commonly applied to the surface of a semi-infinite turbid medium. We find that the image-charge configurations of the partial-current and extrapolated-boundary conditions have the same dipole and quadrupole moments and that the two corresponding solutions to the diffusion equation are approximately equal. In the application of diffusion theory to frequency-domain photon-migration (FDPM) data, these two approaches yield values for the scattering and absorption coefficients that are equal to within 3%. Moreover, the two boundary conditions can be combined to yield a remarkably simple, accurate, and computationally fast method for extracting values for optical parameters from FDPM data. FDPM data were taken both at the surface and deep inside tissue phantoms, and the difference in data between the two geometries is striking. If one analyzes the surface data without accounting for the boundary, values deduced for the optical coefficients are in error by 50% or more. As expected, when aluminum foil was placed on the surface of a tissue phantom, phase and modulation data were closer to the results for an infinite-medium geometry. Raising the reflectivity of a tissue surface can, in principle, eliminate the effect of the boundary. However, we find that phase and modulation data are highly sensitive to the reflectivity in the range of 80–100%, and a minimum value of 98% is needed to mimic an infinite-medium geometry reliably. We conclude that noninvasive measurements of optically thick tissue require a rigorous treatment of the tissue boundary, and we suggest a unified partial-current-extrapolated boundary approach
Retrieving Near-Global Aerosol Loading over Land and Ocean from AVHRR
The spaceborne AVHRR sensors have provided a data record approaching 40 years, which is a crucial asset for studying the long-term trends of aerosol properties on both a global and regional basis. However, due to the limitations on its channels and information content, aerosol optical depth (AOD) data from AVHRR over land are still largely lacking. In this paper, we describe a new physics-based algorithm to retrieve global aerosol properties over both land and ocean from AVHRR for the first time. The over-land algorithm is an extension of our SeaWiFSMODIS Deep Blue algorithm, while a simplified version of the Satellite Ocean Aerosol Retrieval (SOAR) algorithm is used over ocean. We compare the retrieved AVHRR AOD values with those from MODIS collection 6 aerosol products on a daily and seasonal basis, and find in general good agreement between the two. For the satellites with equatorial crossing times within two hours of solar noon, the spatial coverage of the AVHRR aerosol product is comparable to that of MODIS, except over very bright arid regions (such as the Sahara and deserts in the Arabian Peninsula), where the underlying surface reflectance at 630 nm reaches the critical surface reflectance. Based upon comparisons of the AVHRR AOD against the AERONET data, the preliminary results indicate that the expected error is around +/-(0.03+15%) over ocean and +/-(0.05+25%) over land for this first version of the AVHRR aerosol products. Consequently, these new AVHRR aerosol products can contribute important building blocks for constructing a consistent long-term data record for climate studies
Improving numerical reasoning capabilities of inductive logic programming systems
Inductive Logic Programming (ILP) systems have been largely applied to classification problems with a considerable success. The use of ILP systems in problems requiring numerical reasoning capabilities has been far less successful. Current systems have very limited numerical reasoning capabilities, which limits the range of domains where the ILP paradigm may be applied. This paper proposes improvements in numerical reasoning capabilities of ILP systems. It proposes the use of statistical-based techniques like Model Validation and Model Selection to improve noise handling and it introduces a new search stopping criterium based on the PAG method to evaluate learning performance. We have found these extensions essential to improve on results mer statistical-based algorithms for time series forecasting used in the empirical evaluation study
Wurtzite Effects on Spin Splitting of GaN/AlN Quantum Wells
A new mechanism (DeltaC1-DeltaC3 coupling) is accounted for the spin
splitting of wurtzite GaN, which is originated from the intrinsic wurtzite
effects (band folding and structure inversion asymmetry). The band-folding
effect generates two conduction bands (DeltaC1 and DeltaC3), in which p-wave
probability has tremendous change when kz approaches anti-crossing zone. The
spin-splitting energy induced by the DeltaC1-DeltaC3 coupling and wurtzite
structure inversion asymmetry is much larger than that evaluated by traditional
Rashba or Dresselhaus effects. When we apply the coupling to GaN/AlN quantum
wells, we find that the spin-splitting energy is sensitively controllable by an
electric field. Based on the mechanism, we proposed a p-wave-enhanced
spin-polarized field effect transistor, made of InxGa1-xN/InyAl1-yN, for
spintronics application.Comment: 12 pages, 4 figures (total 16 pages
A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family
- …