research
Retrieving Near-Global Aerosol Loading over Land and Ocean from AVHRR
- Publication date
- Publisher
Abstract
The spaceborne AVHRR sensors have provided a data record approaching 40 years, which is a crucial asset for studying the long-term trends of aerosol properties on both a global and regional basis. However, due to the limitations on its channels and information content, aerosol optical depth (AOD) data from AVHRR over land are still largely lacking. In this paper, we describe a new physics-based algorithm to retrieve global aerosol properties over both land and ocean from AVHRR for the first time. The over-land algorithm is an extension of our SeaWiFSMODIS Deep Blue algorithm, while a simplified version of the Satellite Ocean Aerosol Retrieval (SOAR) algorithm is used over ocean. We compare the retrieved AVHRR AOD values with those from MODIS collection 6 aerosol products on a daily and seasonal basis, and find in general good agreement between the two. For the satellites with equatorial crossing times within two hours of solar noon, the spatial coverage of the AVHRR aerosol product is comparable to that of MODIS, except over very bright arid regions (such as the Sahara and deserts in the Arabian Peninsula), where the underlying surface reflectance at 630 nm reaches the critical surface reflectance. Based upon comparisons of the AVHRR AOD against the AERONET data, the preliminary results indicate that the expected error is around +/-(0.03+15%) over ocean and +/-(0.05+25%) over land for this first version of the AVHRR aerosol products. Consequently, these new AVHRR aerosol products can contribute important building blocks for constructing a consistent long-term data record for climate studies