570 research outputs found

    Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings

    Get PDF
    Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal barrier coatings have been developed via low activity chemical vapor deposition and high activity pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed when switching processes. The structural evolution of each coating at various stages of the fabrication process has been and subsequent cyclic oxidation is presented, and the relevant interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in need of further improvement in both cases

    Coseismic seafloor deformation in the trench region during the Mw8.8 Maule megathrust earthquake

    Get PDF
    The Mw 8.8 megathrust earthquake that occurred on 27 February 2010 offshore the Maule region of central Chile triggered a destructive tsunami. Whether the earthquake rupture extended to the shallow part of the plate boundary near the trench remains controversial. The up-dip limit of rupture during large subduction zone earthquakes has important implications for tsunami generation and for the rheological behavior of the sedimentary prism in accretionary margins. However, in general, the slip models derived from tsunami wave modeling and seismological data are poorly constrained by direct seafloor geodetic observations. We difference swath bathymetric data acquired across the trench in 2008, 2011 and 2012 and find ∼3-5 m of uplift of the seafloor landward of the deformation front, at the eastern edge of the trench. Modeling suggests this is compatible with slip extending seaward, at least, to within ∼6 km of the deformation front. After the Mw 9.0 Tohoku-oki earthquake, this result for the Maule earthquake represents only the second time that repeated bathymetric data has been used to detect the deformation following megathrust earthquakes, providing methodological guidelines for this relatively inexpensive way of obtaining seafloor geodetic data across subduction zone

    Quantum Tunneling Effect in Oscillating Friedmann Cosmology

    Get PDF
    It is shown that the tunneling effect in quantum cosmology is possible not only at the very beginning or the very end of the evolution, but also at the moment of maximum expansion of the universe. A positive curvature expanding Friedmann universe changes its state of evolution spontaneously and completely, {\it without} any changes in the matter content, avoiding recollapse, and falling into oscillations between the nonzero values of the scale factor. On the other hand, an oscillating nonsingular universe can tunnel spontaneously to a recollapsing regime. The probability of such kind of tunneling is given explicitly. It is inversely related to the amount of nonrelativistic matter (dust), and grows from a certain fixed value to unity if the negative cosmological constant approaches zero.Comment: 18 pages Latex + 2 figures available by fax upon reques

    Fomin's conception of quantum cosmogenesis

    Full text link
    The main aim of this paper is to extend the early approach to quantum cosmogenesis provided by Fomin. His approach was developed independently to the well-known Tryon description of the creation of the closed universe as a process of quantum fluctuation of vacuum. We apply the Fomin concept to derive the cosmological observables. We argue that Fomin's idea from his 1973 work, in contrast to Tryon's one has impact on the current Universe models and the proposed extension of his theory now can be tested by distant supernovae SNIa. Fomin's idea of the creation of the Universe is based on the intersection of two fundamental theories: general relativity and quantum field theory with the contemporary cosmological models with dark energy. As a result of comparison with contemporary approaches concerning dark energy, we found out that Fomin's idea appears in the context of the present acceleration of the Universe explanation: cosmological models with decaying vacuum. Contemporary it appears in the form of Ricci scalar dark energy connected with the holographic principle. We show also that the Fomin model admits the bounce instead of the initial singularity. We demonstrate that the Fomin model of cosmogenesis can be falsified and using SNIa data the values of model parameters is in agreement with observations.Comment: 12 pages, 4 figures; (v2) 22 pages, references added, figures improved; (v3) rewritten using revtex4; (v4) minor changes; (v5) improved formulas and extended statistical analysi

    Do UK universities communicate their brands effectively through their websites?

    Get PDF
    This paper attempts to explore the effectiveness of UK universities’ websites. The area of branding in higher education has received increasing academic investigation, but little work has researched how universities demonstrate their brand promises through their websites. The quest to differentiate through branding can be challenging in the university context, however. It is argued that those institutions that have a strong distinctive image will be in a better position to face a changing future. Employing a multistage methodology, the web pages of twenty UK universities were investigated by using a combination of content and multivariable analysis. Results indicated ‘traditional values’ such as teaching and research were often well communicated in terms of online brand but ‘emotional values’ like social responsibility and the universities’ environments were less consistently communicated, despite their increased topicality. It is therefore suggested that emotional values may offer a basis for possible future online differentiation

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Quantum Pair Creation of Soliton Domain Walls

    Full text link
    A large body of experimental evidence suggests that the decay of the false vacuum, accompanied by quantum pair creation of soliton domain walls, can occur in a variety of condensed matter systems. Examples include nucleation of charge soliton pairs in density waves [eg. J. H. Miller, Jr. et al., Phys. Rev. Lett. 84, 1555 (2000)] and flux soliton pairs in long Josephon junctions. Recently, Dias and Lemos [J. Math. Phys. 42, 3292 (2001)] have argued that the mass mm of the soliton should be interpreted as a line density and a surface density, respectively, for (2+1)-D and (3+1)-D systems in the expression for the pair production rate. As the transverse dimensions are increased and the total mass (energy) becomes large, thermal activation becomes suppressed, so quantum processes can dominate even at relatively high temperatures. This paper will discuss both experimental evidence and theoretical arguments for the existence of high-temperature collective quantum phenomena

    The social life of Learning Analytics: cluster analysis and the ‘performance’ of algorithmic education

    Get PDF
    This paper argues that methods used for the classification and measurement of online education are not neutral and objective, but involved in the creation of the educational realities they claim to measure. In particular, the paper draws on material semiotics to examine cluster analysis as a ‘performative device’ that, to a significant extent, creates the educational entities it claims to objectively represent through the emerging body of knowledge of Learning Analytics (LA). It also offers a more critical and political reading of the algorithmic assemblages of LA, of which cluster analysis is a part. Our argument is that if we want to understand how algorithmic processes and techniques like cluster analysis function as performative devices, then we need methodological sensibilities that consider critically both their political dimensions and their technical-mathematical mechanisms. The implications for critical research in educational technology are discussed
    corecore