71 research outputs found
Exocytosis and Endocytosis in Neuroendocrine Cells: Inseparable Membranes!
International audienceAlthough much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid toward understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotrans-mitters, neuropeptides, and hormones occurs through calcium-regulated exocytosis at the plasma membrane. To allow recycling of secretory vesicle components and to preserve organelles integrity, cells must initiate and regulate compensatory membrane uptake. This review relates the fate of secretory granule membranes after full fusion exocytosis in neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving and sorting secretory granule membranes after exocytosis and we discuss the potential mechanisms of membrane retrieval
Alterations of the mitochondrial proteome caused by the absence of mitochondrial DNA: A proteomic view
The proper functioning of mitochondria requires that both the mitochondrial
and the nuclear genome are functional. To investigate the importance of the
mitochondrial genome, which encodes only 13 subunits of the respiratory
complexes, the mitochondrial rRNAs and a few tRNAs, we performed a comparative
study on the 143B cell line and on its Rho-0 counterpart, i.e., devoid of
mitochondrial DNA. Quantitative differences were found, of course in the
respiratory complexes subunits, but also in the mitochondrial translation
apparatus, mainly mitochondrial ribosomal proteins, and in the ion and protein
import system, i.e., including membrane proteins. Various mitochondrial
metabolic processes were also altered, especially electron transfer proteins
and some dehydrogenases, but quite often on a few proteins for each pathway.
This study also showed variations in some hypothetical or poorly characterized
proteins, suggesting a mitochondrial localization for these proteins. Examples
include a stomatin-like protein and a protein sharing homologies with bacterial
proteins implicated in tyrosine catabolism. Proteins involved in apoptosis
control are also found modulated in Rho-0 mitochondria.Comment: website publisher: http://www3.interscience.wiley.com
Dendrimer-Functionalized Shell-crosslinked Iron Oxide Nanoparticles for In-Vivo Magnetic Resonance Imaging of Tumors
No Abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58645/1/1671_ftp.pd
In Vivo Delta Opioid Receptor Internalization Controls Behavioral Effects of Agonists
GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal.In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations in vivo which likely lead to differential receptor trafficking.Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs
Smooth Muscle Cell Phenotype Modulation and Contraction on Native and Cross-Linked Polyelectrolyte Multilayers
Smooth muscle cells convert between a motile, proliferative “synthetic ” phenotype and a sessile, “contractile ” phenotype. The ability to manipulate the phenotype of aortic smooth muscle cells with thin biocompatible polyelectrolyte multilayers (PEMUs) with common surface chemical characteristics but varying stiffness was investigated. The stiffness of (PAH/ PAA) PEMUs was varied by heating to form covalent amide bond cross-links between the layers. Atomic force microscopy (AFM) showed that cross-linked PEMUs were thinner than those that were not cross-linked. AFM nanoindentation demonstrated that the Young’s modulus ranged from 6 MPa for hydrated native PEMUs to more than 8 GPa for maximally cross-linked PEMUs. Rat aortic A7r5 smooth muscle cells cultured on native PEMUs exhibited morphology and motility of synthetic cells and expression of the synthetic phenotype markers vimentin, tropomyosin 4, and nonmuscle myosin heavy chain IIB (nmMHCIIB). In comparison, cells cultured on maximally cross-linked PEMUs exhibited the phenotype markers calponin, smooth muscle myosin heavy chain (smMHC), myocardin, transgelin, and smooth muscle R-actin (smActin) that are characteristic of the smooth muscle “contractile ” phenotype. Consistent with those cells being “contractile”, A7r5 cells grown on cross-linked PEMUs produced contractile force when stimulated with a Ca2+ ionophore
Troubles cognitifs et infection par le VIH-1: La protéine Tat altère la neurosécrétion
International audienc
HIV-1 Tat protein perturbs diacylglycerol production at the plasma membrane of neurosecretory cells during exocytosis
International audienc
Detecting HIV-1 Tat in Cell Culture Supernatants by ELISA or Western Blot
International audienceHIV-1 Tat is efficiently secreted by HIV-1-infected or Tat-transfected cells. Accordingly, Tat concentrations in the nanomolar range have been measured in the sera of HIV-1-infected patients, and this protein acts as a viral toxin on bystander cells. Nevertheless, assaying Tat concentration in media or sera is not that straightforward because extracellular Tat is unstable and particularly sensitive to oxidation. Moreover, most anti-Tat antibodies display limited affinity. Here, we describe methods to quantify extracellular Tat using a sandwich ELISA or Western blotting when Tat is secreted by suspension or adherent cells, respectively. In both cases it is important to capture exported Tat using antibodies before any Tat oxidation occurs; otherwise it will become denatured and unreactive toward antibodies
Proteomic Consequences of a Human Mitochondrial tRNA Mutation beyond the Frame of Mitochondrial Translation
International audienceNumerous severe neurodegenerative and neuromus-cular disorders, characterized biochemically by strong perturbations in energy metabolism, are correlated with single point mutations in mitochondrial genes coding for transfer RNAs. Initial comparative proteomics performed on wild-type and Myoclonic Epilepsy and Ragged Red Fibers (MERRF) mitochondria from sibling human cybrid cell lines revealed the potential of this approach. Here a quantitative analysis of several hundred silver-stained spots separated by two-dimensional gel electrophoresis was performed in the specific case of a couple of mitochondria, containing or not mutation A8344G in the gene for mitochondrial tRNA Lys , correlated with MERRF syndrome. Computer-assisted analysis allowed us to detect 38 spots with significant quantitative variations, of which 20 could be assigned by mass spectrometry. These include nuclear encoded proteins located in mitochondria such as respiratory chain subunits, metabolic enzymes, a protein of the mitochon-drial translation machinery, and cytosolic contaminants. Furthermore, Western blotting combined with mass spectrometry revealed the occurrence of numerous isoforms of pyruvate dehydrogenase subunits, with subtle changes in post-translational modifications. This comparative proteomic approach gives the first insight for nuclear encoded proteins that undergo the largest quantitative changes, and pinpoints new potential molecular partners involved in the cascade of events that connect genotype to phenotype
- …