123 research outputs found

    Study on model for cutting force when milling SCM440 steel

    Get PDF
    This article presents empirical study results when milling SCM440 steel. The cutting insert to be used was a TiN coated cutting insert with tool tip radius of 0.5 mm. Experimental process was carried out with 18 experiments according to Box-Behnken matrix, in which cutting speed, feed rate and cutting depth were selected as the input parameters of each experiment. In addition, cutting force was selected as the output parameter. Analysis of experimental results has determined the influence of the input parameters as well as the interaction between them on the output parameters. From the experimental results, a regression model showing the relationship between cutting force and input parameters was built. Box-Cox and Johnson data transformations were applied to construct two other models of cutting force. These three regression models were used to predict cutting force and compare with experimental results. Using parameters including coefficient of determination (R-Sq), adjusted coefficient of determination (R-Sq(adj)) and percentage mean absolute error (% MAE) between the results predicted by the models and the experimental results are the criteria to compare the accuracy of the cutting force models. The results have determined that the two models using two data transformations have higher accuracy than model not using two data transformations. A comparison of the model using the Box-Cox transformation and the model using the Johnson transformation was made with a t-test. The results confirmed that these two models have equal accuracy. Finally, the development direction for the next study is mentioned in this articl

    Research on selection of abrasive grain size and cutting parameters when grinding of interrupted surface using aluminum oxide grinding wheel with ceramic binder

    Get PDF
    In this article, a study on intermittent surface grinding using aluminum oxide grinding wheel with ceramic binder is presented. The testing material is 20XH3A steel (GOST standard – Russian Federation). The testing sample has been sawn 6 grooves, with the width of each groove of 10 mm, the grooves are evenly distributed on the circumference of sample. The testing sample resembles a splined shaft. An experimental matrix of nine experiments has been built by Taguchi method, in which abrasive grain size, workpiece speed, feed rate and depth of cut were selected as input variables. At each experiment, surface roughness (Ra) and roundness error (RE) have been measured. Experimental results show that the aluminum oxide and ceramic binder grinding wheels are perfectly suitable for grinding intermittent surface of 20XH3A steel. Data Envelopment Analysis based Ranking (DEAR) method has been used to solve the multi-objective optimization problem. The results also showed that in order to simultaneously ensure minimum surface roughness and RE, abrasive grain size is 80 mesh, workpiece speed is 910 rpm, feed rate is 0.05 mm/rev and depth of cut is 0.01 mm. If evaluating the grinding process through two criteria including surface roughness and RE, depth of cut is the parameter having the greatest effect on the grinding process, followed by the influence of feed rate, workpiece speed, and abrasive grain is the parameter having the least effect on the grinding process. In addition, the effect of each input parameter on each output parameter has also been analyzed, and orientations for further works have also been recommended in this articl

    A research on application of the measurement of alternatives and ranking according to compromise solution method for multi-criteria decision making in the grinding process

    Get PDF
    The efficiency of cutting methods in general and the grinding method in particular is evaluated through many parameters such as surface roughness, machining productivity, system vibrations, etc. The machining process is considered highly efficient when it meets the set requirements for these parameters such as ensuring the small surface roughness, small vibrations, and high productivity, etc. However, for each specific machining condition, sometimes the set criteria for the output criteria are opposite. In these cases, it is required to solve the Multi-Criteria Decision Making (MCDM) which means making the decision to ensure the harmonization of all criteria. In this study, a study on multi-criteria decision making in the grinding process of 9CrSi steel using CBN grinding wheels is presented. The experimental process was carried out with sixteen experiments according to an orthogonal matrix that designed by the Taguchi method. The workpiece velocity, feed rate, and depth of cut were changed in each experiment. At each experiment, the responses were determined including surface roughness (Ra), the vibration of the grinding wheel shaft in the three directions, corresponding to Ax, Ay, and Az, and material removal yield (Q). Four determination methods of weights for criteria were used. The Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS) method was applied for multi-criteria decision making. The objective of this study is to identify an experiment that simultaneously ensures the small values of Ra, Ax, Ay, and Az and large value

    Development of surface roughness model in turning process of 3X13 steel using TiAlN coated carbide insert

    Get PDF
    Surface roughness that is one of the most important parameters is used to evaluate the quality of a machining process. Improving the accuracy of the surface roughness model will contribute to ensure an accurate assessment of the machining quality. This study aims to improve the accuracy of the surface roughness model in a machnining process. In this study, Johnson and Box-Cox transformations were successfully applied to improve the accuracy of surface roughness model when turning 3X13 steel using TiAlN insert. Four input parameters that were used in experimental process were cutting velocity, feed rate, depth of cut, and insert-nose radius. The experimental matrix was designed using Central Composite Design (CCD) with 29 experiments. By analyzing the experimental data, the influence of input parameters on surface roughness was investigated. A quadratic model was built to explain the relationship of surface roughness and the input parameters. Box-Cox and Johnson transformations were applied to develop two new models of surface roughness. The accuracy of three surface roughness models showed that the surface roughness model using Johnson transformation had the highest accuracy. The second one model of surface roughness is the model using Box-Cox transformation. And surface roughness model without transformation had the smallest accuracy. Using the Johnson transformation, the determination coefficient of surface roughness model increased from 80.43 % to 84.09 %, and mean absolute error reduced from 19.94 % to 16.64 %. Johnson and Box-Cox transformations could be applied to improve the acuaracy of the surface roughness prediction in turning process of 3X13 steel and can be extended with other materials and other machining processe

    STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF THE TURNING PROCESS OF EN 10503 STEEL BY COMBINATION OF TAGUCHI METHOD AND MOORA TECHNIQUE

    Get PDF
    In this study, the multi-objective optimization problem of turning process was successfully solved by a Taguchi combination method and MOORA techniques. In external turning process of EN 10503 steel, surface grinding process, the orthogonal Taguchi L9 matrix was selected to design the experimental matrix with four input parameters namely insert nose radius, cutting velocity, feed rate, and depth of cut. The parameters that were chosen as the evaluation criteria of the machining process were the surface roughness (Ra), the cutting force amplitudes in X, Y, Z directions, and the material removal rate (MRR). Using Taguchi method and MOORA technique, the optimized results of the cutting parameters were determined to obtain the minimum values of surface roughness and cutting force amplitudes in X, Y, Z directions, and maximum value of MRR. These optimal values of insert nose radius, cutting velocity, feed rate, and cutting depth were 1.2 mm, 76.82 m/min, 0.194 mm/rev, and 0.15 mm, respectively. Corresponding to these optimal values of the input parameters, the surface roughness, cutting force amplitudes in X, Y, Z directions, and material removal rate were 0.675 Âµm, 124.969 N, 40.545 N, 164.206 N, and 38.130 mm3/s, respectively. The proposed method in this study can be applied to improve the quality and effectiveness of turning processes by improving the surface quality, reducing the cutting force amplitudes, and increasing the material removal rate. Finally, the research direction was also proposed in this stud

    The role of bank affiliation in bank efficiency: a fuzzy multi-objective data envelopment analysis approach

    Get PDF
    This paper examines differences in bank efficiency between banks affiliated with single-bank holding companies and those affiliated with multi-bank holding companies by applying a fuzzy multi-objective two-stage data envelopment analysis technique. Using a sample of U.S. commercial banks covering 1994-2018, the results show that banks affiliated with multi-bank holding companies are more efficient than those affiliated with single-bank holding companies, suggesting that the former takes advantage of their parents' resources to enhance their efficiency, consistent with the internal capital market theory. They also show that banks with a powerful CEO exhibit lower efficiency than others. Moreover, there is an inverted U shape relationship between multi-bank holding company structure and bank efficiency, suggesting the presence of an optimal number of multi-bank holding subsidiaries that maximizes efficiency

    A RESEARCH ON MULTI-OBJECTIVE OPTIMIZATION OF THE GRINDING PROCESS USING SEGMENTED GRINDING WHEEL BY TAGUCHI-DEAR METHOD

    Get PDF
    In this study, the mutil-objective optimization was applied for the surface grinding process of SAE420 steel. The aluminum oxide grinding wheels that were grooved by 15 grooves, 18 grooves, and 20 grooves were used in the experimental process. The Taguchi method was applied to design the experimental matrix. Four input parameters that were chosen for each experiment were the number of grooves in cylinder surface of grinding wheel, workpiece velocity, feed rate, and cutting depth. Four output parameters that were measured for each experimental were the machining surface roughness, the system vibrations in the three directions (X, Y, Z). The DEAR technique was applied to determine the values of the input parameters to obtaine the minimum values of machining surface roughness and vibrations in three directions. By using this technique, the optimum values of grinding wheel groove number, workpiece velocity, feed-rate, cutting depth were 18 grooves, 15 m/min, 2 mm/stroke, and 0.005 mm, respectively. The verified experimental was performed by using the optimum values of input parameters. The validation results of surface roughness and vibrations in X, Y, Z directions were 0.826 (µm), 0.531 (µm), 0.549 (µm), and 0. 646 (µm), respectively. These results were great improved in comparing to the normal experimental results. Taguchi method and DEAR technique can be applied to improve the quality of grinding surface and reduce the vibrations of the technology system to restrain the increasing of the cutting forces in the grinding process. Finally, the research direction was also proposed in this stud

    A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS

    Get PDF
    ABSTRACT Round component with the minimum value of surface roughness and roundness error is the goal of most of the fine machine processes. This paper presents the research on optimization of plunge centerless grinding process when grinding the 20X-carbon infiltration steel (ГOCT standardRussia) to achieve the minimum value of surface roughness and roundness errors. The input parameters are center height angle of the workpiece ( β ), longitudinal dressing feed-rate ( sd S ), plunge feed-rate ( k S ) and control wheel velocity ( dd v ) using the result of 29 sets in central composite design matrix to show the two second orders of surface rounghness and roundness error models. The final goal of this work focuses on the determination of optimum centerless grinding above the parameters for the minimization of surface roughness ( m R

    Intestinal parasite infections and associated risk factors in communities exposed to wastewater in urban and peri-urban transition zones in Hanoi, Vietnam

    Get PDF
    BACKGROUND: Infections with intestinal parasites (helminths and intestinal protozoa) are endemic in Southeast Asia and inappropriate management and reuse of wastewater might exacerbate the risk of human infections. In rapidly growing urban settings, little is known about the extent of intestinal parasite infections. We assessed the point-prevalence and risk factors of intestinal parasite infections in population groups differently exposed to wastewater in urban and peri-urban transition zones in Hanoi, the capital of Vietnam. METHODS: A cross-sectional survey was carried out between April and June 2014 in people aged ≥ 18 years at risk of wastewater exposure from To Lich River: workers maintaining wastewater treatment facilities; urban farmers reusing wastewater; and urban dwellers at risk of flooding events. For comparison, two peri-urban population groups living in close proximity to the Red River were chosen: farmers using river water for irrigation purposes; and people living in the same communities. A single stool sample was subjected to Kato-Katz and formalin-ether concentration methods for the diagnosis of helminth and intestinal protozoa infections. A questionnaire was administered to determine risk factors and self-reported signs and symptoms. RESULTS: A total of 681 individuals had complete data records. Highest point-prevalence rates of intestinal parasite infections were observed for peri-urban farmers (30 %). Hookworm and Trichuris trichiura were the predominant helminth species (25 % and 5 %, respectively). Peri-urban farmers were at higher odds of infection with intestinal parasites than any other groups (adjusted odds ratio 5.8, 95 % confidence interval 2.5 to 13.7). Lack of access to improved sanitation and not receiving deworming within the past 12 months were associated with higher infection risk, while higher educational attainment and socioeconomic status were negatively associated with intestinal parasite infections. CONCLUSIONS: Our results suggest that exposure to wastewater was not directly associated with infection with helminths and intestinal protozoa in different population groups in Hanoi. These findings might be explained by a high level of awareness of health risks and access to safe sanitary infrastructure in urban areas. The high prevalence rates observed in peri-urban farmers call for specific interventions targeting this population group

    Fault-Tolerant Control for Non-sinusoidal Seven-phase PMSMs with Similar Copper Losses

    Get PDF
    This paper proposes a strategy using new transformation matrices to calculate new current references when a non-sinusoidal seven-phase permanent magnet synchronous machine (PMSM) has an open-circuited phase. The new current references allow to obtain a smooth torque with similar copper losses in the remaining healthy phases even when the back electromotive force (back-EMF) is non-sinusoidal. A real-time current learning process using an adaptive linear neural network (Adaline) is applied to extract from measured currents useful harmonic components in torque generation. It improves torque quality, especially at high speed, even when standard proportional-integral (PI) controllers are applied. In addition, similar copper losses in the remaining phases with the new current references can avoid overheating of windings. The effectiveness of the proposed control strategy is validated by numerical results.We would like to thank the CE2I project sponsored by European Regional Development Fund, French State, and French Region of Hauts-de-France for the financial support
    • …
    corecore