68 research outputs found

    Homozygous deletion of exons 2 and 3 of NPC2 associated with Niemann–Pick disease type C

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134235/1/ajmga37794.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134235/2/ajmga37794-sup-0001-SuppData-S1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134235/3/ajmga37794_am.pd

    High rate of autonomic neuropathy in Cornelia de Lange Syndrome

    Get PDF
    Background: Cornelia de Lange Syndrome (CdLS) is a rare congenital disorder characterized by typical facial features, growth failure, limb abnormalities, and gastroesophageal dysfunction that may be caused by mutations in several genes that disrupt gene regulation early in development. Symptoms in individuals with CdLS suggest that the peripheral nervous system (PNS) is involved, yet there is little direct evidence. Method: Somatic nervous system was evaluated by conventional motor and sensory nerve conduction studies and autonomic nervous system by heart rate variability, sympathetic skin response and sudomotor testing. CdLS Clinical Score and genetic studies were also obtained. Results: Sympathetic skin response and sudomotor test were pathological in 35% and 34% of the individuals with CdLS, respectively. Nevertheless, normal values in large fiber nerve function studies. Conclusions: Autonomic nervous system (ANS) dysfunction is found in many individuals with Cornelia de Lange Syndrome, and could be related to premature aging

    Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood

    Get PDF
    Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families

    Evaluation of Nutritional Practices in the Critical Care Patient (The ENPIC Study): Does Nutrition Really Affect ICU Mortality?

    Get PDF
    Background & aims: The importance of artificial nutritional therapy is underrecognized, typically being considered an adjunctive rather than a primary therapy. We aimed to evaluate the influence of nutritional therapy on mortality in critically ill patients. Methods: This multicenter prospective observational study included adult patients needing artificial nutritional therapy for >48 h if they stayed in one of 38 participating intensive care units for >= 72 h between April and July 2018. Demographic data, comorbidities, diagnoses, nutritional status and therapy (type and details for <= 14 days), and outcomes were registered in a database. Confounders such as disease severity, patient type (e.g., medical, surgical or trauma), and type and duration of nutritional therapy were also included in a multivariate analysis, and hazard ratios (HRs) and 95% confidence intervals (95% CIs) were reported. Results: We included 639 patients among whom 448 (70.1%) and 191 (29.9%) received enteral and parenteral nutrition, respectively. Mortality was 25.6%, with non-survivors having the following char-acteristics: older age; more comorbidities; higher Sequential Organ Failure Assessment (SOFA) scores (6.6 +/- 3.3 vs 8.4 +/- 3.7; P < 0.001); greater nutritional risk (Nutrition Risk in the Critically Ill [NUTRIC] score: 3.8 +/- 2.1 vs 5.2 +/- 1.7; P < 0.001); more vasopressor requirements (70.4% vs 83.5%; P=0.001); and more renal replacement therapy (12.2% vs 23.2%; P=0.001). Multivariate analysis showed that older age (HR: 1.023; 95% CI: 1.008-1.038; P=0.003), higher SOFA score (HR: 1.096; 95% CI: 1.036-1.160; P=0.001), higher NUTRIC score (HR: 1.136; 95% CI: 1.025-1.259; P=0.015), requiring parenteral nutrition after starting enteral nutrition (HR: 2.368; 95% CI: 1.168-4.798; P=0.017), and a higher mean Kcal/Kg/day intake (HR: 1.057; 95% CI: 1.015-1.101; P=0.008) were associated with mortality. By contrast, a higher mean protein intake protected against mortality (HR: 0.507; 95% CI: 0.263-0.977; P=0.042). Conclusions: Old age, higher organ failure scores, and greater nutritional risk appear to be associated with higher mortality. Patients who need parenteral nutrition after starting enteral nutrition may represent a high-risk subgroup for mortality due to illness severity and problems receiving appropriate nutritional therapy. Mean calorie and protein delivery also appeared to influence outcomes. (C) 2021 The Author(s). Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and Metabolism

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    DYRK1A controls replication-associated damage in the developing brain

    No full text
    Trabajo presentado en el 17th Spanish Society for Developmental Biology Meeting, celebrado en modalidad virtual del 18 al 20 de noviembre de 2020.DYRK1A (Dual specificity Tyrosine Phosphorylation Regulated Kinase 1A) is encoded by a dosage-dependent gene and it is involved in neurogenesis and neuron differentiation. The overexpression of DYRK1A causes some of the neurological alterations associated to Down syndrome while its haploinsufficiency leads to developmental delay and microcephaly in both humans and mice. Mouse Dyrk1a-/- embryos die @ at E11 limiting the use of this model to study brain development. In this work we have used a conditional knockout mouse model (Dyrk1aNes) in which Dyrk1a was deleted in neural progenitors before the onset of neurogenesis. Dyrk1aNes embryos presented a reduction of brain parenchyma that was notorious before birth (E19) and very prominent in the striatum and other ventral regions. Staining with antibodies against the active form of caspase3 (CASP3) revealed an increase in apoptotic progenitors and differentiating neurons in Dyrk1aNes embryos. Apoptosis in Dyrk1aNes mutants was already significant in the ventral telencephalon at E11 and progressively increased as neurogenesis advances, affecting dorsal telencephalic regions by E13. Alterations in the levels of the cell cycle regulators Cyclin D1 and D2 and the number of progenitors and neurons that were indicative of defects in neurogenesis were also detected in the dorsal telencephalon of E11-E12 Dyrk1aNes embryos. E11-E13 Dyrk1aNes brains showed a significant increase in cells expressing the replication stress marker gH2AX and active p53 (p53+ nuclei) in the same telencephalic regions labelled for CASP3, suggesting that apoptosis is these brains is p53-dependent and likely triggered by activation of DNA repair pathways. Collectively, these results indicate that DYRK1A is necessary for DNA repair and cell cycle progression of neural brain progenitors
    corecore