6 research outputs found

    Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress

    Get PDF
    International audience; High content omic techniques in combination with stable human in vitro cell culture systems have the potential to improve on current pre-clinical safety regimes by providing detailed mechanistic information of altered cellular processes. Here we investigated the added benefit of integrating transcriptomics, proteomics and metabolomics together with pharmacokinetics for drug testing regimes. Cultured human renal epithelial cells (RPTEC/TERT1) were exposed to the nephrotoxin Cyclosporine A (CsA) at therapeutic and supratherapeutic concentrations for 14 days. CsA was quantified in supernatants and cellular lysates by LC-MS/MS for kinetic modeling. There was a rapid cellular uptake and accumulation of CsA, with a non-linear relationship between intracellular and applied concentrations. CsA at 15 µM induced mitochondrial disturbances and activation of the Nrf2-oxidative-damage and the unfolded protein-response pathways. All three omic streams provided complementary information, especially pertaining to Nrf2 and ATF4 activation. No stress induction was detected with 5 µM CsA; however, both concentrations resulted in a maximal secretion of cyclophilin B. The study demonstrates for the first time that CsA-induced stress is not directly linked to its primary pharmacology. In addition we demonstrate the power of integrated omics for the elucidation of signaling cascades brought about by compound induced cell stress

    Understanding the biokinetics of ibuprofen after single and repeated treatments in rat and human in vitro liver cell systems.

    No full text
    International audienceCommon in vitro toxicity testing often neglects the fate and intracellular concentration of tested compounds, potentially limiting the predictability of in vitro results for in vivo extrapolation. We used in vitro long-term cultures of primary rat (PRH) and human hepatocytes (PHH) and HepaRG cells to characterise and model the biokinetic profile of ibuprofen (IBU) after single and daily repeated exposure (14 days) to two concentrations. A cross-model comparison was carried out at 100ÎĽM, roughly corresponding to the human therapeutic plasma concentration. Our results showed that IBU uptake was rapid and a dynamic equilibrium was reached within 1 or 2 days. All three cell systems efficiently metabolised IBU. In terms of species-differences, our data mirrored known in vivo results. Although no bioaccumulation was observed, IBU intracellular concentration was higher in PRH due to a 10-fold lower metabolic clearance compared to the human-derived cells. In HepaRG cells, IBU metabolism increased over time, but was not related to the treatment. In PHH, a low CYP2C9 activity, the major IBU-metabolising CYP, led to an increased cytotoxicity. A high inter-individual variability was seen in PHH, whereas HepaRG cells and PRH were more reproducible models. Although the concentrations of IBU in PRH over time differed from the concentrations found in human cells under similar exposure conditions

    Biokinetics of chlorpromazine in primary rat and human hepatocytes and human HepaRG cells after repeated exposure.

    No full text
    International audienceSince drug induced liver injury is difficult to predict in animal models, more representative tests are needed to better evaluate these effects in humans. Existing in vitro systems hold great potential to detect hepatotoxicity of pharmaceuticals. In this study, the in vitro biokinetics of the model hepatotoxicant chlorpromazine (CPZ) were evaluated in three different liver cell systems after repeated exposure in order to incorporate repeated-dose testing into an in vitro assay. Primary rat and human hepatocytes, cultured in sandwich configuration and the human HepaRG cell line were treated daily with CPZ for 14days. Samples were taken from medium, cells and well plastic at specific time points after the first and last exposure. The samples were analysed by HPLC-UV to determine the amount of CPZ in these samples. Based on cytotoxicity assays, the three models were tested at 1-2ÎĽM CPZ, while the primary rat hepatocytes and the HepaRG cell line were in addition exposed to a higher concentration of 15-20ÎĽM. Overall, the mass balance of CPZ decreased in the course of 24h, indicating the metabolism of the compound within the cells. The largest decrease in parent compound was seen in the primary cultures; in the HepaRG cell cultures the mass balance only decreased to 50%. CPZ accumulated in the cells during the 14-day repeated exposure. Possible explanations for the accumulation of CPZ are a decrease in metabolism over time, inhibition of efflux transporters or binding to phospholipids. The biokinetics of CPZ differed between the three liver cell models and were influenced by specific cell properties as well as culture conditions. These results support the conclusion that in vitro biokinetics data are necessary to better interpret chemical-induced cytotoxicity data
    corecore