102 research outputs found

    \u3cem\u3eRickettsia felis\u3c/em\u3e in \u3cem\u3eCtenocephalides felis\u3c/em\u3e from Guatemala and Costa Rica

    Get PDF
    Rickettsia felis is an emerging human pathogen associated primarily with the cat flea Ctenocephalides felis. In this study, we investigated the presence of Rickettsia felis in C. felis from Guatemala and Costa Rica. Ctenocephalides felis were collected directly from dogs and cats, and analyzed by polymerase chain reaction for Rickettsia-specific fragments of 17-kDa protein, OmpA, and citrate synthase genes. Rickettsia DNA was detected in 64% (55 of 86) and 58% (47 of 81) of flea pools in Guatemala and Costa Rica, respectively. Sequencing of gltA fragments identified R. felis genotype URRWXCal2 in samples from both countries, and genotype Rf2125 in Costa Rica. This is the first report of R. felis in Guatemala and of genotype Rf2125 in Costa Rica. The extensive presence of this pathogen in countries of Central America stresses the need for increased awareness and diagnosis

    Computational Biology in Costa Rica: The Role of a Small Country in the Global Context of Bioinformatics

    Get PDF
    Introduction: The successful development of high throughput methods for DNA sequencing, transcriptomics, proteomics, and other –omics, has contributed to the emergence of novel possibilities for the examination of complex biological systems through computational analysis. These fields have witnessed unprecedented advances in high income countries. Nevertheless, the role of other nations needs to be examined in order to delineate their contribution within the global context of bioinformatics. Previous articles have focused on the expansion of Computational Biology in Brazil and Mexico [1],[2], two of the largest Latin American countries, and which have shown political commitment to foster their scientific development. Costa Rica is a small Central American country with a population of 4 million, with its territory 164 and 38 times smaller than Brazil and Mexico, respectively. Thus, it is interesting to visualize the possibilities and challenges of this low-income country in the context of the global bioinformatics endeavor.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Species composition, larval habitats, seasonal occurrence and distribution of potential malaria vectors and associated species of Anopheles (Diptera: Culicidae) from the Republic of Korea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Larval mosquito habitats of potential malaria vectors and related species of <it>Anopheles </it>from three provinces (Gyeonggi, Gyeongsangbuk, Chungcheongbuk Provinces) of the Republic of Korea were surveyed in 2007. This study aimed to determine the species composition, seasonal occurrence and distributions of <it>Anopheles </it>mosquitoes. Satellite derived normalized difference vegetation index data (NDVI) was also used to study the seasonal abundance patterns of <it>Anopheles </it>mosquitoes.</p> <p>Methods</p> <p>Mosquito larvae from various habitats were collected using a standard larval dipper or a white plastic larval tray, placed in plastic bags, and were preserved in 100% ethyl alcohol for species identification by PCR and DNA sequencing. The habitats in the monthly larval surveys included artificial containers, ground depressions, irrigation ditches, drainage ditches, ground pools, ponds, rice paddies, stream margins, inlets and pools, swamps, and uncultivated fields. All field-collected specimens were identified to species, and relationships among habitats and locations based on species composition were determined using cluster statistical analysis.</p> <p>Results</p> <p>In about 10,000 specimens collected, eight species of <it>Anopheles </it>belonging to three groups were identified: Hyrcanus Group - <it>Anopheles sinensis</it>, <it>Anopheles kleini</it>, <it>Anopheles belenrae</it>, <it>Anopheles pullus</it>, <it>Anopheles lesteri</it>, <it>Anopheles sineroides</it>; Barbirostris Group - <it>Anopheles koreicus</it>; and Lindesayi Group - <it>Anopheles lindesayi japonicus</it>. Only <it>An. sinensis </it>was collected from all habitats groups, while <it>An. kleini, An. pullus </it>and <it>An. sineroides </it>were sampled from all, except artificial containers. The highest number of <it>Anopheles </it>larvae was found in the rice paddies (34.8%), followed by irrigation ditches (23.4%), ponds (17.0%), and stream margins, inlets and pools (12.0%). <it>Anopheles sinensis </it>was the dominant species, followed by <it>An. kleini, An. pullus </it>and <it>An. sineroides</it>. The monthly abundance data of the <it>Anopheles </it>species from three locations (Munsan, Jinbo and Hayang) were compared against NDVI and NDVI anomalies.</p> <p>Conclusion</p> <p>The species composition of <it>Anopheles </it>larvae varied in different habitats at various locations. <it>Anopheles </it>populations fluctuated with the seasonal dynamics of vegetation for 2007. Multi-year data of mosquito collections are required to provide a better characterization of the abundance of these insects from year to year, which can potentially provide predictive capability of their population density based on remotely sensed ecological measurements.</p

    Global genetic diversity of Aedes aegypti

    Get PDF
    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.Centro de Estudios Parasitológicos y de Vectore

    Global genetic diversity of Aedes aegypti

    Get PDF
    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.Centro de Estudios Parasitológicos y de Vectore

    Risks of dengue secondary infective biting associated with aedes aegypti in home environments in Monterrey, Mexico

    Get PDF
    Abstract. Secondary dengue virus infections are a major risk for developing dengue hemorrhagic fever. Recent exposure to infectious bites of Aedes aegypti (L.) females in previously diagnosed dengue cases fulfills the epidemiological model of dengue hemorrhagic fever. A study was comprised of 357 (89.2%) dengue and 43 (10.8%) dengue hemorrhagic fever cases confirmed by laboratory tests and clinical manifestations. An entomological survey was done in homes and backyards. Concurrently, a questionnaire was used to assess the impact of healthpromotion campaigns through knowledge of the vector and its epidemiological role. Seventy-six (28.4%) of the 268 (67.0%) total wet or dry oviposition sites were positive for the presence of larvae or pupae, while adult Ae. aegypti were found in 32 (8.0%). One hundred thirty-two (33%) householders who formerly had dengue fever or dengue hemorrhagic fever had knowledge of either larval or adult dengue vector stages. According to gender distribution, 145 (36.2%) and 14 (3.5%) of the males confirmed with cases of dengue and dengue hemorrhagic fever lived in houses with 17.9 and 2% of the Ae. aegypti larval and pupal habitats. Houses with females who had dengue and dengue hemorrhagic fever were 212 (53%) and 29 (7.3%), with containers with immature Ae. aegypti in 19.4 and 7%, respectively. Lack of sustainability of government-targeted health education campaigns is the major problem for involving communities in prevention and control of dengu

    Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer is the second most common cancer in women worldwide. NK and cytotoxic T cells play an important role in the elimination of virus-infected and tumor cells through NKG2D activating receptors, which can promote the lysis of target cells by binding to the major histocompatibility complex class I-related chain A (MICA) proteins. Increased serum levels of MICA have been found in patients with epithelial tumors. The aim of this study was to compare the levels of soluble MICA (sMICA) and NKG2D-expressing NK and T cells in blood samples from patients with cervical cancer or precursor lesions with those from healthy donors.</p> <p>Methods</p> <p>Peripheral blood with or without heparin was collected to obtain mononuclear cells or sera, respectively. Serum sMICA levels were measured by ELISA and NKG2D-expressing immune cells were analyzed by flow cytometry. Also, a correlation analysis was performed to associate sMICA levels with either NKG2D expression or with the stage of the lesion.</p> <p>Results</p> <p>Significant amounts of sMICA were detected in sera from nearly all patients. We found a decrease in the number of NKG2D-expressing NK and T cells in both cervical cancer and lesion groups when compared to healthy donors. Pearson analysis showed a negative correlation between sMICA and NKG2D-expressing T cells; however, we did not find a significant correlation when the analysis was applied to sMICA and NKG2D expression on NK cells.</p> <p>Conclusion</p> <p>Our results show for the first time that high sMICA levels are found in sera from patients with both cervical cancer and precursor lesions when compared with healthy donors. We also observed a diminution in the number of NKG2D-expressing NK and T cells in the patient samples; however, a significant negative correlation between sMICA and NKG2D expression was only seen in T cells.</p

    Parasite spread at the domestic animal - wildlife interface: anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild mammals

    Get PDF
    Spillover of parasites at the domestic animal - wildlife interface is a pervasive threat to animal health. Cat and dog fleas (Ctenocephalides felis and C. canis) are among the world's most invasive and economically important ectoparasites. Although both species are presumed to infest a diversity of host species across the globe, knowledge on their distributions in wildlife is poor. We built a global dataset of wild mammal host associations for cat and dog fleas, and used Bayesian hierarchical models to identify traits that predict wildlife infestation probability. We complemented this by calculating functional-phylogenetic host specificity to assess whether fleas are restricted to hosts with similar evolutionary histories, diet or habitat niches.Over 130 wildlife species have been found to harbour cat fleas, representing nearly 20% of all mammal species sampled for fleas. Phylogenetic models indicate cat fleas are capable of infesting a broad diversity of wild mammal species through ecological fitting. Those that use anthropogenic habitats are at highest risk. Dog fleas, by contrast, have been recorded in 31 mammal species that are primarily restricted to certain phylogenetic clades, including canids, felids and murids. Both flea species are commonly reported infesting mammals that are feral (free-roaming cats and dogs) or introduced (red foxes, black rats and brown rats), suggesting the breakdown of barriers between wildlife and invasive reservoir species will increase spillover at the domestic animal - wildlife interface.Our empirical evidence shows that cat fleas are incredibly host-generalist, likely exhibiting a host range that is among the broadest of all ectoparasites. Reducing wild species' contact rates with domestic animals across natural and anthropogenic habitats, together with mitigating impacts of invasive reservoir hosts, will be crucial for reducing invasive flea infestations in wild mammals
    corecore