18 research outputs found

    Uncertainty versus prediction error in Pavlovian fear conditioning: Commentary on Walker et al. (2019)

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162808/2/ejn14578_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162808/1/ejn14578.pd

    Sex differences and similarities in the neuroimmune response to central administration of poly I:C

    Full text link
    Abstract Background The neuroimmune system is required for normal neural processes, including modulation of cognition, emotion, and adaptive behaviors. Aberrant neuroimmune activation is associated with dysregulation of memory and emotion, though the precise mechanisms at play are complex and highly context dependent. Sex differences in neuroimmune activation and function further complicate our understanding of its roles in cognitive and affective regulation. Methods Here, we characterized the physiological sickness and inflammatory response of the hippocampus following intracerebroventricular (ICV) administration of a synthetic viral mimic, polyinosinic:polycytidylic acid (poly I:C), in both male and female C57Bl/6N mice. Results We observed that poly I:C induced weight loss, fever, and elevations of cytokine and chemokines in the hippocampus of both sexes. Specifically, we found transient increases in gene expression and protein levels of IL-1α, IL-1β, IL-4, IL-6, TNFα, CCL2, and CXCL10, where males showed a greater magnitude of response compared with females. Only males showed increased IFNα and IFNγ in response to poly I:C, whereas both males and females exhibited elevations of IFNβ, demonstrating a specific sex difference in the anti-viral response in the hippocampus. Conclusion Our data suggest that type I interferons are one potential node mediating sex-specific cytokine responses and neuroimmune effects on cognition. Together, these findings highlight the importance of using both males and females and analyzing a broad set of inflammatory markers in order to identify the precise, sex-specific roles for neuroimmune dysregulation in neurological diseases and disorders.http://deepblue.lib.umich.edu/bitstream/2027.42/173698/1/12974_2021_Article_2235.pd

    Sexually Dimorphic Alterations in the Transcriptome and Behavior with Loss of Histone Demethylase <i>KDM5C</i>

    No full text
    Chromatin dysregulation has emerged as a major hallmark of neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorders (ASD). The prevalence of ID and ASD is higher in males compared to females, with unknown mechanisms. Intellectual developmental disorder, X-linked syndromic, Claes-Jensen type (MRXSCJ), is caused by loss-of-function mutations of lysine demethylase 5C (KDM5C), a histone H3K4 demethylase gene. KDM5C escapes X-inactivation, thereby presenting at a higher level in females. Initially, MRXSCJ was exclusively reported in males, while it is increasingly evident that females with heterozygous KDM5C mutations can show cognitive deficits. The mouse model of MRXSCJ, male Kdm5c-hemizygous knockout animals, recapitulates key features of human male patients. However, the behavioral and molecular traits of Kdm5c-heterozygous female mice remain incompletely characterized. Here, we report that gene expression and behavioral abnormalities are readily detectable in Kdm5c-heterozygous female mice, demonstrating the requirement for a higher KDM5C dose in females. Furthermore, we found both shared and sex-specific consequences of a reduced KDM5C dose in social behavior, gene expression, and genetic interaction with the counteracting enzyme KMT2A. These observations provide an essential insight into the sex-biased manifestation of neurodevelopmental disorders and sex chromosome evolution
    corecore