779 research outputs found

    Stacking domains in graphene on silicon carbide: a pathway for intercalation

    Get PDF
    Graphene on silicon carbide (SiC) bears great potential for future graphene electronic applications because it is available on the wafer-scale and its properties can be custom-tailored by inserting various atoms into the graphene/SiC interface. It remains unclear, however, how atoms can cross the impermeable graphene layer during this widely used intercalation process. Here we demonstrate that, in contrast to the current consensus, graphene layers on SiC are not homogeneous, but instead composed of domains of different crystallographic stacking. We show that these domains are intrinsically formed during growth and that dislocations between domains dominate the (de)intercalation dynamics. Tailoring these dislocation networks, e.g. through substrate engineering, will increase the control over the intercalation process and could open a playground for topological and correlated electron phenomena in two-dimensional superstructures

    Point defects, ferromagnetism and transport in calcium hexaboride

    Full text link
    The formation energy and local magnetic moment of a series of point defects in CaB6_6 are computed using a supercell approach within the generalized gradient approximation to density functional theory. Based on these results, speculations are made as to the influence of these defects on electrical transport. It is found that the substitution of Ca by La does not lead to the formation of a local moment, while a neutral B6_6 vacancy carries a moment of 2.4 Bohr magnetons, mostly distributed over the six nearest-neighbour B atoms. A plausible mechanism for the ferromagnetic ordering of these moments is suggested. Since the same broken B-B bonds appear on the preferred (100) cleavage planes of the CaB6_6 structure, it is argued that internal surfaces in polycrystals as well as external surfaces in general will make a large contribution to the observed magnetization.Comment: Calculated defect formation energies had to be corrected, due to the use of a wrong reference energy for the perfect crystal in the original pape

    Charge dynamics and "ferromagnetism" of A1-xLaxB6 (A=Ca and Sr)

    Full text link
    Ferromagnetism has been reported recently in La-doped alkaline-earth hexaborides, A1-xLaxB6 (A=Ca, Sr, and Ba). We have performed the reflectivity, Hall resistivity, and magnetization measurements of A1-xLaxB6. The results indicate that A1-xLaxB6 can be regarded as a simple doped semimetal, with no signature of an excitonic state as suggested by several theories. It is also found that the surface of as-grown samples (10 micrometer in thickness) has a different electronic structure from a bulk one, and a fairly large number of paramagnetic moments are confined in this region. After eliminating these paramagnetic moments at the surface, we could not find any evidence of an intrinsic ferromagnetic moment in our samples, implying the possibility that the ferromagnetism of A1-xLaxB6 reported so far is neither intrinsic.Comment: 7 pages, 8 figure

    Theory of High \tc Ferromagnetism in SrB6SrB_6 family: A case of Doped Spin-1 Mott insulator in a Valence Bond Solid Phase

    Full text link
    Doped divalent hexaborides such as Sr1xLaxB6Sr_{1-x}La_xB_6 exhibit high \tc ferromagnetism. We isolate a degenerate pair of 2p2p-orbitals of boron with two valence electrons, invoke electron correlation and Hund coupling, to suggest that the undoped state is better viewed as a spin-1 Mott insulator; it is predicted to be a type of 3d Haldane gap phase with a spin gap 0.1eV\sim 0.1 eV, much smaller than the charge gap of >1.0eV > 1.0 eV seen in ARPES. The experimentally seen high \tc `ferromagnetism' is argued to be a complex magnetic order in disguise - either a canted 6-sublattice AFM (1200\approx 120^0) order or its quantum melted version, a chiral spin liquid state, arising from a type of double exchange mechanism.Comment: 4 pages, 2 figures; minor corrections, references adde

    Theory of Ferromagnetism in Ca1-xLaxB6

    Full text link
    Novel ferromagnetism in Ca1x_{1-x}Lax_{x}B6_6 is studied in terms of the Ginzburg-Landau theory for excitonic order parameters, taking into account symmetry of the wavefunctions. We found that the minima of the free energy break both inversion and time-reversal symmetries, while the product of these two remains preserved. This explains various novelties of the ferromagnetism and predicts a number of magnetic properties, including the magnetoelectric effect, which can be tested experimentally.Comment: 5 pages, accepted for publication in Phys.Rev.Let

    Fermi Surface Measurements on the Low Carrier Density Ferromagnet Ca1-xLaxB6 and SrB6

    Get PDF
    Recently it has been discovered that weak ferromagnetism of a dilute 3D electron gas develops on the energy scale of the Fermi temperature in some of the hexaborides; that is, the Curie temperature approximately equals the Fermi temperature. We report the results of de Haas-van Alphen experiments on two concentrations of La-doped CaB6 as well as Ca-deficient Ca1-dB6 and Sr-deficient Sr1-dB6. The results show that a Fermi surface exists in each case and that there are significant electron-electron interactions in the low density electron gas.Comment: 4 pages, 5 figures, submitted to PR

    CaB_6: a new semiconducting material for spin electronics

    Full text link
    Ferromagnetism was recently observed at unexpectedly high temperatures in La-doped CaB_6. The starting point of all theoretical proposals to explain this observation is a semimetallic electronic structure calculated for CaB_6 within the local density approximation. Here we report the results of parameter-free quasiparticle calculations of the single-particle excitation spectrum which show that CaB_6 is not a semimetal but a semiconductor with a band gap of 0.8 eV. Magnetism in La_xCa_{1-x}B_6 occurs just on the metallic side of a Mott transition in the La-induced impurity band.Comment: 4 pages, 1 postscript figur

    POSIWID and determinism in design for behaviour change

    Get PDF
    Copyright @ 2012 Social Services Research GroupWhen designing to influence behaviour for social or environmental benefit, does designers' intent matter? Or are the effects on behaviour more important, regardless of the intent involved? This brief paper explores -- in the context of design for behaviour change -- some treatments of design, intentionality, purpose and responsibility from a variety of fields, including Stafford Beer's "The purpose of a system is what it does" and Maurice Broady's perspective on determinism. The paper attempts to extract useful implications for designers working on behaviour-related problems, in terms of analytical or reflective questions to ask during the design process

    Electronic Structure of Calcium Hexaboride within the Weighted Density Approximation

    Full text link
    We report calculations of the electronic structure of CaB6_6 using the weighted density approximation (WDA) to density functional theory. We find a semiconducting band structure with a sizable gap, in contrast to local density approximation (LDA) results, but in accord with recent experimental data. In particular, we find an XX-point band gap of 0.8 eV. The WDA correction of the LDA error in describing the electronic structure of CaB6_6 is discussed in terms of the orbital character of the bands and the better cancelation of self-interactions within the WDA.Comment: 1 figur

    An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status

    Full text link
    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 11 pages, 6 Figure
    corecore