67 research outputs found

    Efeito de indutores de resistência na incidência do mal do Panamá em banana maçã.

    Get PDF
    O mal do Panamá ou murcha de Fusarium, causado por Fusarium oxysporum Schlechtend.: Fr. f.sp. cubense (E.F. Smith) W.C. Snyder & Hansen, é uma das doenças mais importantes da bananeira (Musa spp.). Primeiramente relatado na Austrália, esta doença está presente em todas as regiões produtoras do mundo. Nas décadas de 1950 e 1960, o mal do Panamá dizimou a bananicultura da América Central e Caribe, então constituída unicamente da variedade Gros Michel (Daly & Walduck, 2006). No Brasil, onde foi detectado em 1930 sobre banana Maçã (Cordeiro et al., 2003), essa doença causa perdas acentuadas na produção de frutos em todo o País (Cordeiro et al., 1993), notadamente na variedade Maçã e naquelas do subgrupo Prata.pdf 202

    Potencial de uso de rizobactérias para o controle da fusariose do abacaxizeiro.

    Get PDF
    Atualmente, o Brasil é o maior produtor mundial de abacaxi com uma produção de 2,52 milhões de toneladas. Dentre as regiões produtoras, o Nordeste brasileiro é responsável por aproximadamente 46% desta produção. Na Bahia, quarto produtor nacional, a abacaxicultura é praticada em diversas microrregiões, a exemplo do município de Itaberaba localizado no semi-árido baiano. A abacaxicultura exerce importante papel socioeconômico onde é praticada, uma vez que contribui para geração de emprego e renda, além da fixação do homem no campo. Entretanto, a fusariose, doença causada por Fusarium guttiforme (sin: F. subglutinans), provoca perdas significativas constituindo o principal fator limitante da cultura. O controle da doença baseiase na integração de práticas culturais, incluindo a aplicação de fungicidas. Consciente dos problemas ambientais promovidos pelo uso de agroquímicos, a sociedade tem exigido métodos alternativos ao uso destes produtos. Dentre as alternativas, o controle biológico vem sendo intensivamente estudado como ferramenta no controle integrado de diversas doenças de plantas. Todavia, estudos neste sentido referentes ao patossistema abacaxi - F. guttiforme são escassos ou nulos. Neste estudo objetivou-se verificar o potencial de uso de rizobactérias para o controle da fusariose do abacaxizeiro.PDF. 057

    GFP and RFP transformation of Fusarium guttiforme (sin. Fusarium subglutinans f. sp. annanas).

    Get PDF
    Edição dos Resumos do 42° Congresso Brasileiro de Fitopatologia, Rio de Janeiro, ago. 2009

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    The C-terminal region of Trypanosoma cruzi MASPs is antigenic and secreted via exovesicles.

    Get PDF
    Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected and emerging tropical disease, endemic to South America and present in non-endemic regions due to human migration. The MASP multigene family is specific to T. cruzi, accounting for 6% of the parasite's genome and plays a key role in immune evasion. A common feature of MASPs is the presence of two conserved regions: an N-terminal region codifying for signal peptide and a C-terminal (C-term) region, which potentially acts as GPI-addition signal peptide. Our aim was the analysis of the presence of an immune response against the MASP C-term region. We found that this region is highly conserved, released via exovesicles (EVs) and has an associated immune response as revealed by epitope affinity mapping, IFA and inhibition of the complement lysis assays. We also demonstrate the presence of a fast IgM response in Balb/c mice infected with T. cruzi. Our results reveal the presence of non-canonical secreted peptides in EVs, which can subsequently be exposed to the immune system with a potential role in evading immune system targets in the parasite

    Boosting Endothelial Autophagy by MicroRNA Delivery Quenches Vascular Inflammation

    No full text
    corecore