28 research outputs found

    Low intrinsic efficacy for G protein activation can explain the improved side-effect profile of new opioid agonists

    Get PDF
    Biased agonism at G protein–coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of G proteins versus β-arrestins are commonly limited by the small response windows obtained in pathways that are not amplified or are less effectively coupled to receptor engagement, such as β-arrestin recruitment. At the μ-opioid receptor (MOR), G protein–biased ligands have been proposed to induce less constipation and respiratory depressant side effects than opioids commonly used to treat pain. However, it is unclear whether these improved safety profiles are due to a reduction in β-arrestin–mediated signaling or, alternatively, to their low intrinsic efficacy in all signaling pathways. Here, we systematically evaluated the most recent and promising MOR-biased ligands and assessed their pharmacological profile against existing opioid analgesics in assays not confounded by limited signal windows. We found that oliceridine, PZM21, and SR-17018 had low intrinsic efficacy. We also demonstrated a strong correlation between measures of efficacy for receptor activation, G protein coupling, and β-arrestin recruitment for all tested ligands. By measuring the antinociceptive and respiratory depressant effects of these ligands, we showed that the low intrinsic efficacy of opioid ligands can explain an improved side effect profile. Our results suggest a possible alternative mechanism underlying the improved therapeutic windows described for new opioid ligands, which should be taken into account for future descriptions of ligand action at this important therapeutic target

    Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study

    Get PDF
    Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aβ) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD

    Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study

    Get PDF
    Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease.Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (A beta) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed.Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG).Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.</p

    Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer

    Get PDF
    Metastasis is the leading cause of cancer related death. This multistage process involves contribution from both tumour cells and the tumour stroma to release metastatic cells into the circulation. Circulating tumour cells (CTCs) survive circulatory cytotoxicity, extravasate and colonise secondary sites effecting metastatic outcome. Reprogramming the transcriptomic landscape is a metastatic hallmark but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used whole tumour plus single cell RNA sequencing in primary bone cancer and CTCs to perform weighted gene co-expression network analysis to systematically detect coordinated changes in metastatic transcript expression. This approach with comparisons applied to data collected from cell line models, clinical samples and xenograft mouse models revealed MAPK7/MMP9 signalling as a driver for primary bone cancer metastasis. RNAi knockdown of MAPK7 reduces proliferation, colony formation, migration, tumour growth, macrophage residency/polarisation and lung metastasis. Parallel to these observations were reduction of activated interleukins IL1B, IL6, IL8 plus mesenchymal markers VIM and VEGF in response to MAPK7 loss. Our results implicate a newly discovered, multidimensional MAPK7/MMP9 signalling hub in primary bone cancer metastasis that is clinically actionable

    Synthesis and spectroscopic investigation of substituted piperazine-2,5-dione derivatives

    No full text
    The piperazine-2,5-dione moiety is a useful scaffold for functionalisation to generate bioactive molecules. Synthetic methods for accessing substituted piperazine-2,5-diones involve cyclising dipeptides or building from the already established core. Utilising the latter method, we have developed procedures to condense a variety of methoxylated benzaldehydes to exclusively form (Z,Z)-(benzylidene)piperazine-2,5-diones 7. This methodology can easily be utilised to form both homo- and heterodimeric substituted piperazine-2,5-diones. Subjecting these compounds to hydrogenation affords two isomers. We detail simple NMR analyses that allow for identification of the cis or trans isomers. These analyses, combined with X-ray crystallography have shown that under the hydrogenation conditions used the cis isomer forms as the major product. The synthetic methodology combined with spectral analysis provides a valuable understanding of piperazine-2,5-dione properties

    Cubanes in Medicinal Chemistry

    Get PDF
    Cubane is a highly strained saturated hydrocarbon system that has historically been of interest in theoretical organic chemistry. More recently it has become a molecule of interest for biological applications due to its inherent stability and limited toxicity. Of greater significance is the ability to potentially functionalize cubane at each of its carbon atoms, providing complex biologically active molecules with unique spatial arrangements for probing active sites. These characteristics have led to an increased use of cubane in pharmaceutically relevant molecules. In this Perspective we describe synthetic methodology for accessing a range of functionalized cubanes and their applications in pharmaceuticals. We also provide some perspectives on challenges and future directions in the advancement of this field

    A Raney-Cobalt-Mediated Tandem Reductive Cyclization Route to the 1,5-Methanoazocino[4,3‑<i>b</i>]indole Framework of the Uleine and <i>Strychnos</i> Alkaloids

    No full text
    The readily accessible enones <b>8</b>, <b>17</b>, and <b>18</b> undergo 2-fold reductive cyclization reactions upon exposure to hydrogen in the presence of Raney-cobalt and thereby afford compounds <b>11</b> (72%), <b>19</b> (47%), and <b>20</b> (84%), respectively. These products embody the ABCD-ring system associated with the title alkaloids, and compound <b>11</b> can be converted, over four steps and in 33% yield, into congener <b>24</b> incorporating the ABCDE-ring system of the <i>Strychnos</i> alkaloids

    A Raney-Cobalt-Mediated Tandem Reductive Cyclization Route to the 1,5-Methanoazocino[4,3‑<i>b</i>]indole Framework of the Uleine and <i>Strychnos</i> Alkaloids

    No full text
    The readily accessible enones <b>8</b>, <b>17</b>, and <b>18</b> undergo 2-fold reductive cyclization reactions upon exposure to hydrogen in the presence of Raney-cobalt and thereby afford compounds <b>11</b> (72%), <b>19</b> (47%), and <b>20</b> (84%), respectively. These products embody the ABCD-ring system associated with the title alkaloids, and compound <b>11</b> can be converted, over four steps and in 33% yield, into congener <b>24</b> incorporating the ABCDE-ring system of the <i>Strychnos</i> alkaloids

    Intramolecular Cycloaddition Reactions of <i>cis</i>-1,2-Dihydrocatechol Derivatives Incorporating C3-Tethered Diazoketones, Nitrile Oxides, and Azides: Stereocontrolled Routes to Enantiomerically Pure Spiro[5.5]undecanes and Related Systems

    No full text
    A series of enantiomerically pure <i>cis</i>-1,2-dihydrocatechol derivatives incorporating C3-tethered diazoketone, nitrile oxide, or azide residues has been prepared from the precursor iodide <b>7</b> using Negishi cross-coupling reactions. Such derivatives, including diazoketone <b>12</b>, participate in regio- and stereo-selective intramolecular cycloaddition reactions to give adducts, for example, <b>15</b>, that are readily elaborated to spiro[5.5]­undecanes such as <b>18</b>
    corecore