1,577 research outputs found

    Probing the IGM/Galaxy Connection IV: The LCO/WFCCD Galaxy Survey of 20 Fields Surrounding UV Bright Quasars

    Full text link
    We publish the survey for galaxies in 20 fields containing ultraviolet bright quasars (with z_em 0.1 to 0.5) that can be used to study the association between galaxies and absorption systems from the low-z intergalactic medium (IGM). The survey is magnitude limited (R~19.5 mag) and highly complete out to 10' from the quasar in each field. It was designed to detect dwarf galaxies (L ~ 0.1 L*) at an impact parameter rho 1Mpc (z=0.1) from a quasar. The complete sample (all 20 fields) includes R-band photometry for 84718 sources and confirmed redshifts for 2800 sources. This includes 1198 galaxies with 0.005 < z < (z_em - 0.01) at a median redshift of 0.18, which may associated with IGM absorption lines. All of the imaging was acquired with cameras on the Swope 40" telescope and the spectra were obtained via slitmask observations using the WFCCD spectrograph on the Dupont 100" telescope at Las Campanas Observatory (LCO). This paper describes the data reduction, imaging analysis, photometry, and spectral analysis of the survey. We tabulate the principal measurements for all sources in each field and provide the spectroscopic dataset online.Comment: Accepted to the Astrophysical Journal Supplements; 20 pages, only 6 figures shown in this version. See http://www.ucolick.org/~xavier/WFCCDOVI/index.html for a full-length manuscript and other supportive materia

    Fluid flow at the interface between elastic solids with randomly rough surfaces

    Full text link
    I study fluid flow at the interface between elastic solids with randomly rough surfaces. I use the contact mechanics model of Persson to take into account the elastic interaction between the solid walls and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. I calculate the flow tensor which determines the pressure flow factor and, e.g., the leak-rate of static seals. I show how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. I introduce a matrix D(Zeta), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure

    The Deuterium, Oxygen, and Nitrogen Abundance Toward LSE 44

    Full text link
    We present measurements of the column densities of interstellar DI, OI, NI, and H2 made with FUSE, and of HI made with IUE toward the sdO star LSE 44, at a distance of 554+/-66 pc. This target is among the seven most distant Galactic sight lines for which these abundance ratios have been measured. The column densities were estimated by profile fitting and curve of growth analyses. We find D/H = (2.24 +1.39 -1.32)E-5, D/O = (1.99 +1.30 -0.67)E-2, D/N = (2.75 +1.19 -0.89)E-1, and O/H = (1.13 +0.96 -0.71)E-3 (2 sigma). Of the most distant Galactic sight lines for which the deuterium abundance has been measured LSE 44 is one of the few with D/H higher than the Local Bubble value, but D/O toward all these targets is below the Local Bubble value and more uniform than the D/H distribution. (Abstract abridged.)Comment: 20 pages, including 9 figures. Accepted for publication in Ap

    The Role of a Hot Gas Environment on the Evolution of Galaxies

    Full text link
    Most spiral galaxies are found in galaxy groups with low velocity dispersions; most E/S0 galaxies are found in galaxy groups with relatively high velocity dispersions. The mass of the hot gas we can observe in the E/S0 groups via their thermal X-ray emission is, on average, as much as the baryonic mass of the galaxies in these groups. By comparison, galaxy clusters have as much or more hot gas than stellar mass. Hot gas in S-rich groups, however, is of low enough temperature for its X-ray emission to suffer heavy absorption due to Galactic HI and related observational effects, and hence is hard to detect. We postulate that such lower temperature hot gas does exist in low velocity dispersion, S-rich groups, and explore the consequences of this assumption. For a wide range of metallicity and density, hot gas in S-rich groups can cool in far less than a Hubble time. If such gas exists and can cool, especially when interacting with HI in existing galaxies, then it can help link together a number of disparate observations, both Galactic and extragalactic, that are otherwise difficult to understand.Comment: 16 pages with one figure. ApJ Letters, in pres

    UV Absorption Lines from High-Velocity Gas in the Vela Supernova Remnant: New insights from STIS Echelle Observations of HD72089

    Get PDF
    The star HD72089 is located behind the Vela supernova remnant and shows a complex array of high and low velocity interstellar absorption features arising from shocked clouds. A spectrum of this star was recorded over the wavelength range 1196.4 to 1397.2 Angstroms at a resolving power lambda/Delta lambda = 110,000 and signal-to-noise ratio of 32 by STIS on the Hubble Space Telescope. We have identified 7 narrow components of C I and have measured their relative populations in excited fine-structure levels. Broader features at heliocentric velocities ranging from -70 to +130 km/s are seen in C II, N I, O I, Si II, S II and Ni II. In the high-velocity components, the unusually low abundances of N I and O I, relative to S II and Si II, suggest that these elements may be preferentially ionized to higher stages by radiation from hot gas immediately behind the shock fronts.Comment: 11 pages, 2 figures, Latex. Submitted for the special HST ERO issue of the Astrophysical Journal Letter

    The Heavy Element Enrichment of Lyman alpha Clouds in the Virgo Supercluster

    Full text link
    Using high S/N STIS echelle spectra (FWHM=7 km/s) of 3C 273, we constrain the metallicities of two Lya clouds in the vicinity of the Virgo cluster. We detect C II, Si II, and Si III absorption lines in the Lya absorber at z = 0.00530. Previous observations with FUSE have revealed Ly beta - Ly theta lines at this redshift, thereby accurately constraining N(H I). We model the ionization of the gas and derive [C/H] = -1.2^{+0.3}_{-0.2}, [Si/C] = 0.2+/-0.1, and log n_{H} = -2.8+/-0.3. The model implies a small absorber thickness, ~70 pc, and thermal pressure p/k ~ 40 cm^{-3} K. It is most likely that the absorber is pressure confined by an external medium because gravitational confinement would require a very high ratio of dark matter to baryonic matter. Based on Milky Way sight lines in which carbon and silicon abundances have been reliably measured in the same interstellar cloud (including new measurements presented herein), we argue that the overabundance of Si relative to C is not due to dust depletion. Instead, this probably indicates that the gas has been predominately enriched by Type II supernovae. Such enrichment is most plausibly provided by an unbound galactic wind, given the absence of galaxies within a projected distance of 100 kpc and the presence of galaxies capable of driving a wind at larger distances. We also constrain the metallicity and physical conditions of the Virgo absorber at z = 0.00337 based on detections of O VI and H I and an upper limit on C IV. If this absorber is collisionally ionized, the O VI/C IV limit requires T > 10^{5.3} K. For either collisional ionization or photoionization, we find that [O/H] > -2.0 at z = 0.00337.Comment: Final Ap.J. versio

    Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova 2006X in M100

    Get PDF
    We present extensive optical (UBVRI), near-infrared (JK) light curves and optical spectroscopy of the Type Ia supernova (SN) 2006X in the nearby galaxy NGC 4321 (M100). Our observations suggest that either SN 2006X has an intrinsically peculiar color evolution, or it is highly reddened [E(B - V)_{host} = 1.42+/-0.04 mag] with R_V = 1.48+/-0.06, much lower than the canonical value of 3.1 for the average Galactic dust. SN 2006X also has one of the highest expansion velocities ever published for a SN Ia. Compared with the other SNe Ia we analyzed, SN 2006X has a broader light curve in the U band, a more prominent bump/shoulder feature in the V and R bands, a more pronounced secondary maximum in the I and near-infrared bands, and a remarkably smaller late-time decline rate in the B band. The B - V color evolution shows an obvious deviation from the Lira-Phillips relation at 1 to 3 months after maximum brightness. At early times, optical spectra of SN 2006X displayed strong, high-velocity features of both intermediate-mass elements (Si, Ca, and S) and iron-peak elements, while at late times they showed a relatively blue continuum, consistent with the blue U-B and B-V colors at similar epochs. A light echo and/or the interaction of the SN ejecta and its circumstellar material may provide a plausible explanation for its late-time photometric and spectroscopic behavior. Using the Cepheid distance of M100, we derive a Hubble constant of 72.7+/-8.2 km s^{-1} Mpc^{-1}(statistical) from the normalized dereddened luminosity of SN 2006X. We briefly discuss whether abnormal dust is a universal signature for all SNe Ia, and whether the most rapidly expanding objects form a subclass with distinct photometric and spectroscopic properties.Comment: 48 pages, 20 figures and 11 tables. Accepted Version (ApJ, 2008, March issue

    Multi-phase High-Velocity Clouds toward HE 0226-4110 and PG 0953+414

    Full text link
    We study the physical conditions, elemental abundances, and kinematics of the high-velocity clouds (HVCs) along the sight lines toward active galaxies HE0226-4110 and PG0953+414 using Hubble Space Telescope Imaging Spectrograph and Far Ultraviolet Spectroscopic Explorer data. Our observations reveal multiple components of HVC absorption in lines of HI, CII, CIII, CIV, OVI, SiII, SiIII, and SiIV in both directions. We investigate whether photoionization by the extragalactic background radiation or by escaping Milky Way radiation can explain the observed ionization pattern. We find that photoionization is a good explanation for the CII, CIII, SiII, and SiIII features, but not for the OVI or CIV associated with the HVCs, suggesting that two principal phases exist: a warm (T~10^4K), photoionized phase and a hotter (T=1-3x10^5K), collisionally-ionized phase. The warm HVCs toward HE0226-4110 have high levels of ionization (97-99%), and metallicities ([Z/H] between -0.9 and -0.4) close to those in the Magellanic Stream, which lies eleven degrees away on the sky at similar velocities. These HVCs have thermal pressures that would place them close to equilibrium in a fully ionized 10^6 K Galactic corona with n_H=4-9x10^{-5}cm^{-3} at 50 kpc. A mini-survey of the hot, collisionally ionized HVC components seen here and in five other sight lines finds that in 11/12 cases, the high ions have kinematics and ionic ratios that are consistent with an origin in conductive interfaces. However, the broad absorption wing on the OVI profile toward PG0953+414 is not completely explained by the interface scenario, and may be tracing the outflow of hot gas into the Milky Way halo as part of a Galactic fountain or wind.Comment: 27 pages, 12 figures (9 in color), accepted for publication in Ap

    Detection of Mycoplasma pneumoniae in Simulated and True Clinical Throat Swab Specimens by Nanorod Array-Surface-Enhanced Raman Spectroscopy

    Get PDF
    The prokaryote Mycoplasma pneumoniae is a major cause of respiratory disease in humans, accounting for 20% of all community-acquired pneumonia and the leading cause of pneumonia in older children and young adults. The limitations of existing options for mycoplasma diagnosis highlight a critical need for a new detection platform with high sensitivity, specificity, and expediency. Here we evaluated silver nanorod arrays (NA) as a biosensing platform for detection and differentiation of M. pneumoniae in culture and in spiked and true clinical throat swab samples by surface-enhanced Raman spectroscopy (SERS). Three M. pneumoniae strains were reproducibly differentiated by NA-SERS with 95%–100% specificity and 94–100% sensitivity, and with a lower detection limit exceeding standard PCR. Analysis of throat swab samples spiked with M. pneumoniae yielded detection in a complex, clinically relevant background with >90% accuracy and high sensitivity. In addition, NA-SERS correctly classified with >97% accuracy, ten true clinical throat swab samples previously established by real-time PCR and culture to be positive or negative for M. pneumoniae. Our findings suggest that the unique biochemical specificity of Raman spectroscopy, combined with reproducible spectral enhancement by silver NA, holds great promise as a superior platform for rapid and sensitive detection and identification of M. pneumoniae, with potential for point-of-care application

    Spatial Variability in the Ratio of Interstellar Atomic Deuterium to Hydrogen. I. Observations toward delta Orionis by the Interstellar Medium Absorption Profile Spectrograph

    Full text link
    Studies of the abundances of deuterium in different astrophysical sites are of fundamental importance to answering the question about how much deuterium was produced during big bang nucleosynthesis and what fraction of it was destroyed later. With this in mind, we used the Interstellar Medium Absorption Profile Spectrograph (IMAPS) on the ORFEUS-SPAS II mission to observe at a wavelength resolution of 4 km/s (FWHM) the L-delta and L-epsilon absorption features produced by interstellar atomic deuterium in the spectrum of delta Ori A. A chi-square analysis indicated that 0.96 < N(D I)< 1.45e15 cm^{-2} at a 90% level of confidence, and the gas is at a temperature of about 6000K. To obtain an accurate value of N(H I) needed for a determination of the atomic ratio of D to H, we measured the L-alpha absorption features in 57 spectra of delta Ori in the IUE archive. From our measurement of N(H I)= 1.56e20 cm^{-2}, we found that N(D I)/N(H I)= 7.4(+1.9,-1.3)e-6 (90% confidence). Our result for D/H contrasts with the more general finding along other lines of sight that D/H is approximately 1.5e-5. The underabundance of D toward delta Ori A is not accompanied by an overabundance of N or O relative to H, as one might expect if the gas were subjected to more stellar processing than usual.Comment: 37 pages, 6 figures. Submitted to the Astrophysical Journa
    corecore