30 research outputs found

    Differentiating glaucoma from chiasmal compression using optical coherence tomography: the macular naso-temporal ratio

    Get PDF
    BACKGROUND/AIMS: The analysis of visual field loss patterns is clinically useful to guide differential diagnosis of visual pathway pathology. This study investigates whether a novel index of macular atrophy patterns can discriminate between chiasmal compression and glaucoma. METHODS: A retrospective series of patients with preoperative chiasmal compression, primary open-angle glaucoma (POAG) and healthy controls. Macular optical coherence tomography (OCT) images were analysed for the macular ganglion cell and inner plexiform layer (mGCIPL) thickness. The nasal hemi-macula was compared with the temporal hemi-macula to derive the macular naso-temporal ratio (mNTR). Differences between groups and diagnostic accuracy were explored with multivariable linear regression and the area under the receiver operating characteristic curve (AUC). RESULTS: We included 111 individuals (31 with chiasmal compression, 30 with POAG and 50 healthy controls). Compared with healthy controls, the mNTR was significantly greater in POAG cases (β=0.07, 95% CI 0.03 to 0.11, p=0.001) and lower in chiasmal compression cases (β=-0.12, 95% CI -0.16 to -0.09, p<0.001), even though overall mGCIPL thickness did not discriminate between these pathologies (p=0.36). The mNTR distinguished POAG from chiasmal compression with an AUC of 95.3% (95% CI 90% to 100%). The AUCs when comparing healthy controls to POAG and chiasmal compression were 79.0% (95% CI 68% to 90%) and 89.0% (95% CI 80% to 98%), respectively. CONCLUSIONS: The mNTR can distinguish between chiasmal compression and POAG with high discrimination. This ratio may provide utility over-and-above previously reported sectoral thinning metrics. Incorporation of mNTR into the output of OCT instruments may aid earlier diagnosis of chiasmal compression

    Genetic influences on disease course and severity, 30 years after a clinically isolated syndrome

    Get PDF
    Multiple sclerosis risk has a well-established polygenic component, yet the genetic contribution to disease course and severity remains unclear and difficult to examine. Accurately measuring disease progression requires long-term study of clinical and radiological outcomes with sufficient follow-up duration to confidently confirm disability accrual and multiple sclerosis phenotypes. In this retrospective study, we explore genetic influences on long-term disease course and severity; in a unique cohort of clinically isolated syndrome patients with homogenous 30-year disease duration, deep clinical phenotyping and advanced MRI metrics. Sixty-one clinically isolated syndrome patients [41 female (67%): 20 male (33%)] underwent clinical and MRI assessment at baseline, 1-, 5-, 10-, 14-, 20- and 30-year follow-up (mean age ± standard deviation: 60.9 ± 6.5 years). After 30 years, 29 patients developed relapsing-remitting multiple sclerosis, 15 developed secondary progressive multiple sclerosis and 17 still had a clinically isolated syndrome. Twenty-seven genes were investigated for associations with clinical outcomes [including disease course and Expanded Disability Status Scale (EDSS)] and brain MRI (including white matter lesions, cortical lesions, and brain tissue volumes) at the 30-year follow-up. Genetic associations with changes in EDSS, relapses, white matter lesions and brain atrophy (third ventricular and medullary measurements) over 30 years were assessed using mixed-effects models. HLA-DRB1*1501-positive (n = 26) patients showed faster white matter lesion accrual [+1.96 lesions/year (0.64-3.29), P = 3.8 × 10-3], greater 30-year white matter lesion volumes [+11.60 ml, (5.49-18.29), P = 1.27 × 10-3] and higher annualized relapse rates [+0.06 relapses/year (0.005-0.11), P = 0.031] compared with HLA-DRB1*1501-negative patients (n = 35). PVRL2-positive patients (n = 41) had more cortical lesions (+0.83 [0.08-1.66], P = 0.042), faster EDSS worsening [+0.06 points/year (0.02-0.11), P = 0.010], greater 30-year EDSS [+1.72 (0.49-2.93), P = 0.013; multiple sclerosis cases: +2.60 (1.30-3.87), P = 2.02 × 10-3], and greater risk of secondary progressive multiple sclerosis [odds ratio (OR) = 12.25 (1.15-23.10), P = 0.031] than PVRL2-negative patients (n = 18). In contrast, IRX1-positive (n = 30) patients had preserved 30-year grey matter fraction [+0.76% (0.28-1.29), P = 8.4 × 10-3], lower risk of cortical lesions [OR = 0.22 (0.05-0.99), P = 0.049] and lower 30-year EDSS [-1.35 (-0.87,-3.44), P = 0.026; multiple sclerosis cases: -2.12 (-0.87, -3.44), P = 5.02 × 10-3] than IRX1-negative patients (n = 30). In multiple sclerosis cases, IRX1-positive patients also had slower EDSS worsening [-0.07 points/year (-0.01,-0.13), P = 0.015] and lower risk of secondary progressive multiple sclerosis [OR = 0.19 (0.04-0.92), P = 0.042]. These exploratory findings support diverse genetic influences on pathological mechanisms associated with multiple sclerosis disease course. HLA-DRB1*1501 influenced white matter inflammation and relapses, while IRX1 (protective) and PVRL2 (adverse) were associated with grey matter pathology (cortical lesions and atrophy), long-term disability worsening and the risk of developing secondary progressive multiple sclerosis

    Differentiating Multiple Sclerosis From AQP4-Neuromyelitis Optica Spectrum Disorder and MOG-Antibody Disease With Imaging

    Get PDF
    Background and objectives: Relapsing remitting multiple sclerosis (RRMS), aquaporin4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) may have overlapping clinical features. There is an unmet need for imaging markers that differentiate between them when serologic testing is unavailable or ambiguous. We assessed whether imaging characteristics typical of MS discriminate RRMS from AQP4-NMOSD and MOGAD, alone and in combination. Methods: Adult, non-acute patients with RRMS, APQ4-NMOSD, MOGAD and healthy controls, were prospectively recruited at the National Hospital for Neurology and Neurosurgery (London, UK), and the Walton Centre (Liverpool, UK) between 2014 and 2019. They underwent conventional and advanced brain, cord and optic nerve MRI, and optical coherence tomography. Results: A total of 91 consecutive patients (31 RRMS, 30 APQ4-NMOSD, 30 MOGAD) and 34 healthy controls were recruited. The most accurate measures differentiating RRMS from AQP4-NMOSD were the proportion of lesions with the central vein sign (CVS) (84% vs. 33%, accuracy/specificity/sensitivity: 91/88/93%, p&lt;0.001), followed by cortical lesions (median: 2 [range: 1-14] vs. 1 [0-1], accuracy/specificity/sensitivity: 84/90/77%, p=0.002), and white matter lesions (mean: 39.07 [±25.8] vs. 9.5 [±14], accuracy/specificity/sensitivity: 78/84/73%, p=0.001). The combination of higher proportion of CVS, cortical lesions and optic nerve magnetization transfer ratio reached the highest accuracy in distinguishing RRMS from AQP4-NMOSD (accuracy/specificity/sensitivity: 95/92/97%, p&lt;0.001).The most accurate measures favouring RRMS over MOGAD were: white matter lesions (39.07 [±25.8] vs. 1 [±2.3], accuracy/specificity/sensitivity: 94/94/93%, p=0.006), followed by cortical lesions (2 [1-14] vs. 1 [0-1], accuracy/specificity/sensitivity: 84/97/71%, p=0.004), and retinal nerve fibre layer thickness (RNFL) (mean: 87.54 [±13.83] vs 75.54 [±20.33], accuracy/specificity/sensitivity: 80/79/81%, p=0.009). Higher cortical lesion number combined with higher RNFL thickness best differentiated RRMS from MOGAD (accuracy/specificity/sensitivity: 84/92/77%, p&lt;0.001). Discussion: Cortical lesions, CVS and optic nerve markers achieve a high accuracy in distinguishing RRMS from APQ4-NMOSD and MOGAD. This information may be useful in clinical practice, especially outside the acute phase and when serologic testing is ambiguous or not promptly available. Classification of evidence: This study provides Class II evidence that selected conventional and advanced brain, cord, and optic nerve MRI and OCT markers distinguish adult patients with RRMS from APQ4-NMOSD and MOGAD

    Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial

    Get PDF
    IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved

    Prognostic value of myocardial perfusion scintigraphy in type 2 diabetic patients with mild, stable angina pectoris

    Get PDF
    Aim: To determine the prognostic value of reversible myocardial perfusion defects on myocardial perfusion scintigraphy (MPS) in patients with type 2 diabetes mellitus and mild anginal complaints. Methods and results: In the MERIDIAN trial, patients with diabetes mellitus type 2, stable, mild anginal symptoms (Canadian Cardiovascular Society classification (CCS) I-II/IV) and reversible perfusion defects were randomized to either continued pharmacological treatment or early invasive treatment. In this sub analysis, the severity of the myocardial perfusion defect was related to the occurrence of cardiac death and non-fatal myocardial infarction, in 319 patients (63% male, 65 ± 9 years). During follow-up (2.2 ± 0.6 years), 14 patients had a cardiac event: 3 in 171 patients without myocardial ischemia and 11 in 148 patients with myocardial ischemia. Annual event rates rose from 0.8% to 5.8% with increasing severity of myocardial ischemia. Multivariable analysis identified the presence of severe myocardial ischemia (hazard ratio (HR) 5.45, 95%CI 1.89-15.71) and insulin use (HR 4.00, 95%CI 1.25-12.75) as independent predictors of cardiac events. Conclusions: Type 2 diabetics with mild anginal symptoms with no or moderate myocardial ischemia have a low annual cardiac event rate. In patients with severe myocardial ischemia event rate increased 3-6 fold

    Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias

    Get PDF
    Robert Clarke and colleagues conduct a meta-analysis of unpublished datasets to examine the causal relationship between elevation of homocysteine levels in the blood and the risk of coronary heart disease. Their data suggest that an increase in homocysteine levels is not likely to result in an increase in risk of coronary heart disease

    A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease

    Get PDF
    n/

    Anterior visual system imaging to investigate energy failure in multiple sclerosis

    Get PDF
    Mitochondrial failure and hypoxia are key contributors to multiple sclerosis pathophysiology. Importantly, improving mitochondrial function holds promise as a new therapeutic strategy in multiple sclerosis. Currently, studying mitochondrial changes in multiple sclerosis is hampered by a paucity of non-invasive techniques to investigate mitochondrial function of the CNS in vivo. It is against this backdrop that the anterior visual system provides new avenues for monitoring of mitochondrial changes. The retina and optic nerve are among the metabolically most active structures in the human body and are almost always affected to some degree in multiple sclerosis. Here, we provide an update on emerging technologies that have the potential to indirectly monitor changes of metabolism and mitochondrial function. We report on the promising work with optical coherence tomography, showing structural changes in outer retinal mitochondrial signal bands, and with optical coherence angiography, quantifying retinal perfusion at the microcapillary level. We show that adaptive optics scanning laser ophthalmoscopy can visualize live perfusion through microcapillaries and structural changes at the level of single photoreceptors and neurons. Advantages and limitations of these techniques are summarized with regard to future research into the pathology of the disease and as trial outcome measures
    corecore