11 research outputs found

    The immunogenicity of plant-based COE-GCN4pII protein in pigs against the highly virulent porcine epidemic diarrhea virus strain from genotype 2

    Get PDF
    Porcine epidemic diarrhea virus (PEDV) is a serious infectious causative agent in swine, especially in neonatal piglets. PEDV genotype 2 (G2) strains, particularly G2a, were the primary causes of porcine epidemic diarrhea (PED) outbreaks in Vietnam. Here, we produced a plant-based CO-26K-equivalent epitope (COE) variant from a Vietnamese highly virulent PEDV strain belonging to genotype 2a (COE/G2a) and evaluated the protective efficacy of COE/G2a-GCN4pII protein (COE/G2a-pII) in piglets against the highly virulent PEDV G2a strain following passive immunity. The 5-day-old piglets had high levels of PEDV-specific IgG antibodies, COE-IgA specific antibodies, neutralizing antibodies, and IFN-γ responses. After virulent challenge experiments, all of these piglets survived and had normal clinical symptoms, no watery diarrhea in feces, and an increase in their body weight, while all of the negative control piglets died. These results suggest that the COE/G2a-pII protein produced in plants can be developed as a promising vaccine candidate to protect piglets against PEDV G2a infection in Vietnam

    EVALUATION OF GENETIC DIVERSITY OF THE BLACK GLUTINOUS RICE BASED ON AGRO-MORPHOLOGICAL CHARACTERS

    Get PDF
    The study assessed the variations in nine agro-morphological characters among and within the black glutinous rice (Oryza sativa) population from Chau Thanh District, Tra Vinh Province. The nine quantitative agromorphological characters that were measured include culm length, leaf length, leaf width, number of panicles, panicle length, grain length, grain width, number of firm grain, and number of grain per panicle. The unweighted pair group method with arithmetic mean method and principal coordinate analysis by the NTSYS program were applied in this study to classify the nine agro-morphological characters. In addition, to compare the variations in quantitative characters between O. sativa populations, one-way analysis of variance (ANOVA) was used. The results showed significant differences between the black glutinous rice populations for all quantitative agro-morphological characters. Moreover, some agro-morphological characters showed positive correlations to each other. The dendrogram generated from the analysis process of the agromorphological data divided the O. sativa populations into two groups with unfamiliar features. However, the O. sativa populations assessed exhibited a wide range of variations in morphological characteristics, both within the same population and among other populations with the same strains

    The anti-SARS-CoV-2 monoclonal antibody, bamlanivimab, minimally impacts the endogenous immune response to COVID-19 vaccination

    Get PDF
    As the coronavirus disease 2019 (COVID-19) pandemic evolves and vaccine rollout progresses, the availability and demand for monoclonal antibodies for the prevention and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also accelerating. This longitudinal serological study evaluated the magnitude and potency of the endogenous antibody response to COVID-19 vaccination in participants who first received a COVID-19 monoclonal antibody in a prevention study. Over the course of six months, serum samples were collected from a population of nursing home residents and staff enrolled in a clinical trial who were randomized to either bamlanivimab treatment or placebo. In an unplanned component of this trial, a subset of these participants was subsequently fully vaccinated with two doses of either SpikeVax (Moderna) or Comirnaty (BioNTech/Pfizer) COVID-19 mRNA vaccines. This post-hoc analysis assessed the immune response to vaccination for 135 participants without prior SARS-CoV-2 infection. Antibody titers and potency were assessed using three assays against SARS-CoV-2 proteins that bamlanivimab does not efficiently bind to, thereby reflecting the endogenous antibody response. All bamlanivimab and placebo recipients mounted a robust immune response to full COVID-19 vaccination, irrespective of age, risk-category, and vaccine type with any observed differences of uncertain clinical importance. These findings are pertinent for informing public health policy with results that suggest that the benefit of receiving COVID-19 vaccination at the earliest opportunity outweighs the minimal effect on the endogenous immune response due to prior prophylactic COVID-19 monoclonal antibody infusion

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke

    Plant crude extracts containing oligomeric hemagglutinins protect chickens against highly Pathogenic Avian Influenza Virus after one dose of immunization

    No full text
    Highly pathogenic avian influenza viruses (HPAIV) have been responsible for causing several severe outbreaks across the world. To protect poultry farms and to prevent the possible spread of new influenza pandemics, vaccines that are both efficacious and low-cost are in high demand. We produced stable, large hemagglutinin H5 oligomers in planta by the specific interaction between S*Tag and S*Protein. H5 oligomers combined via S*Tag::S*Protein interaction in plant crude extracts induced strong humoral immune responses, strong neutralizing antibody responses, and resistance in chickens after challenge with a wild type HPAIV H5 virus strain. In all three parameters, plant crude extracts with H5 oligomers induced better responses than crude extracts containing trimers. The neutralizing antibodies induced by by two-dose and one dose immunization with an adjuvanted crude extract containing H5 oligomer protected vaccinated chickens from two lethal H5N1 virus strains with the efficiency of 92% and 100%, respectively. Following housing vaccinated chickens together with ten non-immunized chickens, only one of these chickens had detectable levels of the H5N1 virus. To facilitate the easy storage of a candidate vaccine, the H5 oligomer crude extracts were mixed with adjuvants and stored for 3.5 and 5.5 months at 4 degrees C, and chickens were immunized with these crude extracts. All these vaccinated chickens survived after a lethal H5N1 virus challenge. H5 oligomer crude extracts are comparable to commercial vaccines as they also induce strong virus-neutralizing immune responses following the administration of a single dose. The cost-effective production of plant crude extract vaccine candidates and the high stability after long-term storage will enable and encourage the further exploration of this technology for veterinary vaccine development

    Hierarchical Porous Activated Carbon-Supported Ruthenium Catalysts for Catalytic Cleavage of Lignin Model Compounds

    No full text
    The catalytic conversion of lignin model compounds was performed using Ru/C catalysts and an autoclave reactor. The Ru/C catalysts were prepared by the impregnation method using highly porous homemade activated carbon and characterized by XRD, SEM, and specific surface area. The catalytic reactions were performed in a high pressure/temperature reactor at different temperatures and with different solvents. The results showed that the novel Ru/C catalysts prepared from carbon supports activated by the KOH agent showed higher catalytic activity than the commercial catalyst. Ethanol and 2-propanol were suitable solvents for the cleavage of the β–O–4 ether bond of 2-phenoxy-1-phenyl ethanol (~65–70% conversion) over a Ru/C-KOH-2 catalyst at 220 °C in comparison to tert-butanol and 1-propanol solvents (~43–47% conversion of 2-phenoxy-1-phenyl ethanol). Also, the increase in reaction temperature from 200 °C to 240 °C enhanced the cleavage of the ether bond with an increase in phenol selectivity from 9.4% to 19.5% and improved the catalytic conversion of 2-phenoxy-1-phenyl ethanol from 46.6% to 98.5% over the Ru/C-KOH-2 catalyst and ethanol solvent. The Ru/C-KOH-2 catalyst showed outstanding conversion (98.5%) of 2-phenoxy-1-phenylethanol at 240 °C, 1 h, ethanol solvent. This novel hierarchical porous activated carbon-supported ruthenium catalyst (Ru/C-KOH-2) can be applied for the further conversion of the lignin compound

    Hierarchical Porous Activated Carbon-Supported Ruthenium Catalysts for Catalytic Cleavage of Lignin Model Compounds

    No full text
    The catalytic conversion of lignin model compounds was performed using Ru/C catalysts and an autoclave reactor. The Ru/C catalysts were prepared by the impregnation method using highly porous homemade activated carbon and characterized by XRD, SEM, and specific surface area. The catalytic reactions were performed in a high pressure/temperature reactor at different temperatures and with different solvents. The results showed that the novel Ru/C catalysts prepared from carbon supports activated by the KOH agent showed higher catalytic activity than the commercial catalyst. Ethanol and 2-propanol were suitable solvents for the cleavage of the &beta;&ndash;O&ndash;4 ether bond of 2-phenoxy-1-phenyl ethanol (~65&ndash;70% conversion) over a Ru/C-KOH-2 catalyst at 220 &deg;C in comparison to tert-butanol and 1-propanol solvents (~43&ndash;47% conversion of 2-phenoxy-1-phenyl ethanol). Also, the increase in reaction temperature from 200 &deg;C to 240 &deg;C enhanced the cleavage of the ether bond with an increase in phenol selectivity from 9.4% to 19.5% and improved the catalytic conversion of 2-phenoxy-1-phenyl ethanol from 46.6% to 98.5% over the Ru/C-KOH-2 catalyst and ethanol solvent. The Ru/C-KOH-2 catalyst showed outstanding conversion (98.5%) of 2-phenoxy-1-phenylethanol at 240 &deg;C, 1 h, ethanol solvent. This novel hierarchical porous activated carbon-supported ruthenium catalyst (Ru/C-KOH-2) can be applied for the further conversion of the lignin compound

    Proceedings of the 5th Conference on Language Teaching and Learning

    No full text
    This conference proceedings contains articles on the various research ideas of the academic community and practitioners presented at the 5th Conference on Language Teaching and Learning (LTAL-2023). LTAL2023 was organized by the Ho Chi Minh City University of Food Industry, Vietnam on May 7, 2023. Conference Title: 5th Conference on Language Teaching and LearningConference Acronym: LTAL-2023Conference Date: 7 May 2023Conference Location: VietnamConference Organizers: Ho Chi Minh City University of Food Industry, Vietnam. Related Proceedings:  Proceedings of the 4th Conference on Language Teaching and Learnin

    Proteomic analysis of ceftazidime and meropenem-exposed Pseudomonas aeruginosa ATCC 9027

    No full text
    Abstract Background Pseudomonas aeruginosa is well known for its intrinsic ability to resist a wide range of antibiotics, thus complicates treatment. Thus, understanding the response of the pathogen to antibiotics is important for developing new therapies. In this study, proteomic response of P. aeruginosa to the commonly used anti-pseudomonas antibiotics, ceftazidime (Caz) and meropenem (Mem) was investigated. Methods P. aeruginosa ATCC 9027, an antibiotic-susceptible strain, was exposed to sub-MIC values of antibiotics either Caz or Mem for 14 days to obtain E1 strains and then cultured in antibiotic-free environments for 10 days to obtain E2 strains. Proteomes of the initial and E1, E2 strains were identified and comparatively analyzed using isobaric tags for relative and absolute quantitation (iTRAQ) in cooperation with nano LC–MS/MS. Noted up and down-regulated proteins were confirmed with quantitative reverse transcriptase PCR (qRT-PCR). Results Overall, 1039 and 1041 proteins were identified in Caz and Mem-exposed strains, respectively. Upon antibiotic exposure, there were 7–10% up-regulated (Caz: 71, Mem: 85) and down-regulated (Caz: 106, Mem: 69) proteins (1.5-fold change cut-off). For both Caz and Mem, the DEPs were primarily the ones involved in metabolic process, membrane, virulence, protein synthesis, and antibiotic resistance in which proteins involved in antibiotics resistance tended to be up-regulated while proteins involved in protein synthesis and metabolic process were down-regulated. Noted proteins included beta-lactamase AmpC which was up-regulated and OprD which was down-regulated in both the antibiotic-exposed strains. Besides, biofilm formation related proteins TssC1 and Hcp1 in Caz- exposed strains and the membrane/ periplasmic proteins Azu and PagL in Mem-exposed strains were found significantly down-regulated. qRT-PCR results confirmed the expression change of AmpC, Hcp1 and OprD proteins. Conclusion Exposure of Pseudomonas aeruginosa to sub-MIC values of Caz and Mem resulted in around 10% change in its proteome. Not only proteins with confirmed roles in antibiotic resistance mechanisms changed their expression but also virulence- associated proteins. Both Caz and Mem response involved up-regulation of AmpC and down-regulation of OprD. While TssC1 and Hcp1 were responsible for Caz response, Azu and PagL were more likely involved in Mem response

    Effects of Size and Surface Properties of Nanodiamonds on the Immunogenicity of Plant-Based H5 Protein of A/H5N1 Virus in Mice

    No full text
    Nanodiamond (ND) has recently emerged as a potential nanomaterial for nanovaccine development. Here, a plant-based haemagglutinin protein (H5.c2) of A/H5N1 virus was conjugated with detonation NDs (DND) of 3.7 nm in diameter (ND4), and high-pressure and high-temperature (HPHT) oxidative NDs of ~40–70 nm (ND40) and ~100–250 nm (ND100) in diameter. Our results revealed that the surface charge, but not the size of NDs, is crucial to the protein conjugation, as well as the in vitro and in vivo behaviors of H5.c2:ND conjugates. Positively charged ND4 does not effectively form stable conjugates with H5.c2, and has no impact on the immunogenicity of the protein both in vitro and in vivo. In contrast, the negatively oxidized NDs (ND40 and ND100) are excellent protein antigen carriers. When compared to free H5.c2, H5.c2:ND40, and H5.c2:ND100 conjugates are highly immunogenic with hemagglutination titers that are both 16 times higher than that of the free H5.c2 protein. Notably, H5.c2:ND40 and H5.c2:ND100 conjugates induce over 3-folds stronger production of both H5.c2-specific-IgG and neutralizing antibodies against A/H5N1 than free H5.c2 in mice. These findings support the innovative strategy of using negatively oxidized ND particles as novel antigen carriers for vaccine development, while also highlighting the importance of particle characterization before use
    corecore