85 research outputs found

    Relaxation of hole spins in quantum dots via two-phonon processes

    Full text link
    We investigate theoretically spin relaxation in heavy hole quantum dots in low external magnetic fields. We demonstrate that two-phonon processes and spin-orbit interaction are experimentally relevant and provide an explanation for the recently observed saturation of the spin relaxation rate in heavy hole quantum dots with vanishing magnetic fields. We propose further experiments to identify the relevant spin relaxation mechanisms in low magnetic fields.Comment: 5 pages, 2 figure

    Superconductor spintronics: Modeling spin and charge accumulation in out-of-equilibrium NS junctions subjected to Zeeman magnetic fields

    Get PDF
    We study the spin and charge accumulation in junctions between a superconductor and a ferromagnet or a normal metal in the presence of a Zeeman magnetic field, when the junction is taken out of equilibrium by applying a voltage bias. We write down the most general form for the spin and charge current in such junctions, taking into account all spin-resolved possible tunneling processes. We make use of these forms to calculate the spin accumulation in NS junctions subjected to a DC bias, and to an AC bias, sinusoidal or rectangular. We observe that in the limit of negligeable changes on the superconducting gap, the NS dynamical conductance is insensitive to spin imbalance. Therefore to probe the spin accumulation in the superconductor, one needs to separate the injection and detection point, i. e. the electrical spin detection must be non-local. We address also the effect of the spin accumulation induced in the normal leads by driving a spin current and its effects on the detection of the spin accumulation in the superconductor. Finally, we investigate the out-of-equilibrium spin susceptibility of the SC, and we show that it deviates drastically from it's equilibrium value

    Strong Spin-Orbit Interaction and Helical Hole States in Ge/Si Nanowires

    Full text link
    We study theoretically the low-energy hole states of Ge/Si core/shell nanowires. The low-energy valence band is quasidegenerate, formed by two doublets of different orbital angular momenta, and can be controlled via the relative shell thickness and via external fields. We find that direct (dipolar) coupling to a moderate electric field leads to an unusually large spin-orbit interaction of Rashba type on the order of meV which gives rise to pronounced helical states enabling electrical spin control. The system allows for quantum dots and spin qubits with energy levels that can vary from nearly zero to several meV, depending on the relative shell thickness.Comment: 8 pages, 6 figure

    Histological changes in the vulva and vagina from ovariectomised rats undergoing oestrogen treatment

    Get PDF
    Background: The purpose of this study was to assess the histological changes occurring in the vagina and vulva in ovariectomised female rats, as well as the response to the administration of injectable oestrogens. Material and methods: We used 30 female Wistar white rats, distributed as follows: group 1 — the control group, group 2 — the operated but untreated rats, and groups 3, 4 and 5 — operated rats, to which oestrogenic treatment was administered (Estradiol, Estradurin, Sintofolin) at a dosage of 0.2 mg/rat/day. After 14 days of treatment, all animals were sacrificed and vaginal and vulvar biopsies were taken from all groups. Results: In group 2, we encountered structural changes of the vaginal mucosa, with severe atrophy and alterations in the thickness of the vagina and vulva. In groups 3, 4 and 5 we found marked hyperplasia of the vaginal and vulvar epithelium, eosinophilic and mast cell infiltration in the chorion. Conclusions: Our study proves that the histopathological changes during anoestrus after administration of oestrogens are cell hyperplasia, thickening of the superficial mucosal layer, eosinophilic and mast cells infiltrations, and chorionic congestion. Furthermore, we demonstrated that Estradiol therapy induces the most evident histological changes when compared to synthetic oestrogens such as Estradurin or Sintofolin.

    Circuit Quantum Electrodynamics with a Spin Qubit

    Full text link
    Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact via a "quantum bus", enabling two-qubit entanglement and the implementation of simple quantum algorithms. We combine the circuit quantum electrodynamics architecture with spin qubits by coupling an InAs nanowire double quantum dot to a superconducting cavity. We drive single spin rotations using electric dipole spin resonance and demonstrate that photons trapped in the cavity are sensitive to single spin dynamics. The hybrid quantum system allows measurements of the spin lifetime and the observation of coherent spin rotations. Our results demonstrate that a spin-cavity coupling strength of 1 MHz is feasible.Comment: Related papers at http://pettagroup.princeton.edu

    Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering

    Full text link
    Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolve coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific requirements. Unfortunately, to this point it has been impossible to determine the spin dynamics directly. If the molecule is sufficiently simple, the spin motion can be indirectly assessed by an approximate model Hamiltonian fitted to experimental measurements of various types. Here we show that recently-developed instrumentation yields the four-dimensional inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal space and enables the spin dynamics to be determined with no need of any model Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to demonstrate the potential of this new approach. For the first time we extract a model-free picture of the quantum dynamics of a molecular nanomagnet. This allows us, for example, to examine how a quantum fluctuation propagates along the ring and to directly test the degree of validity of the N\'{e}el-vector-tunneling description of the spin dynamics

    Electric polarization induced by Neel order without magnetic superlattice: experimental study of Cu3Mo2O9 and numerical study of a small spin cluster

    Full text link
    We clarify that the antiferromagnetic order in the distorted tetrahedral quasi-one dimensional spin system induces electric polarizations. In this system, the effects of the low dimensionality and the magnetic frustration are expected to appear simultaneously. We obtain the magnetic-field-temperature phase diagram in Cu3Mo2O9 by studying the dielectric constant and the spontaneous electric polarization. Around the tricritical point at 10 T and 8 K, the change of the direction in the electric polarization causes a colossal magnetocapacitance. We calculate the charge redistribution in the small spin cluster consisting of two magnetic tetrahedra to demonstrate the electric polarization induced by the antiferromagnetism.Comment: 10 pages 6 figures, in press in J. Phys. Soc. Jp

    On a functional equation involving iterates and powers

    Get PDF
    We present a complete list of all continuous solutions f : (0,+∞)→(0,+∞) of the equation f 2(x) = γ [f (x)]αxβ, where α, β and γ > 0 are given real numbers
    • …
    corecore