9 research outputs found

    Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondria mediate most of the energy production that occurs in the majority of eukaryotic organisms. These subcellular organelles contain a genome that differs from the nuclear genome and is referred to as mitochondrial DNA (mtDNA). Despite a disparity in gene content, all mtDNAs encode at least two components of the mitochondrial electron transport chain, including cytochrome <it>c </it>oxidase I (Cox1).</p> <p>Presentation of the hypothesis</p> <p>A positionally conserved ORF has been found on the complementary strand of the <it>cox1 </it>genes of both eukaryotic mitochondria (protist, plant, fungal and animal) and alpha-proteobacteria. This putative gene has been named <it>gau </it>for gene antisense ubiquitous in mtDNAs. The length of the deduced protein is approximately 100 amino acids. In vertebrates, several stop codons have been found in the mt <it>gau </it>region, and potentially functional <it>gau </it>regions have been found in nuclear genomes. However, a recent bioinformatics study showed that several hypothetical overlapping mt genes could be predicted, including <it>gau; </it>this involves the possible import of the cytosolic AGR tRNA into the mitochondria and/or the expression of mt antisense tRNAs with anticodons recognizing AGR codons according to an alternative genetic code that is induced by the presence of suppressor tRNAs. Despite an evolutionary distance of at least 1.5 to 2.0 billion years, the deduced Gau proteins share some conserved amino acid signatures and structure, which suggests a possible conserved function. Moreover, BLAST analysis identified rare, sense-oriented ESTs with poly(A) tails that include the entire <it>gau </it>region. Immunohistochemical analyses using an anti-Gau monoclonal antibody revealed strict co-localization of Gau proteins and a mitochondrial marker.</p> <p>Testing the hypothesis</p> <p>This hypothesis could be tested by purifying the <it>gau </it>gene product and determining its sequence. Cell biological experiments are needed to determine the physiological role of this protein.</p> <p>Implications of the hypothesis</p> <p>Studies of the <it>gau </it>ORF will shed light on the origin of novel genes and their functions in organelles and could also have medical implications for human diseases that are caused by mitochondrial dysfunction. Moreover, this strengthens evidence for mitochondrial genes coded according to an overlapping genetic code.</p

    Molecular basis for intestinal mucin recognition by galectin-3 and C-type lectins

    Get PDF
    Intestinal mucins trigger immune responses upon recognition by dendritic cells via protein–carbohydrate interactions. We used a combination of structural, biochemical, biophysical, and cell-based approaches to decipher the specificity of the interaction between mucin glycans and mammalian lectins expressed in the gut, including galectin (Gal)-3 and C-type lectin receptors. Gal-3 differentially recognized intestinal mucins with different O-glycosylation profiles, as determined by mass spectrometry (MS). Modification of mucin glycosylation, via chemical treatment leading to a loss of terminal glycans, promoted the interaction of Gal-3 to poly-N-acetyllactosamine. Specific interactions were observed between mucins and mouse dendritic cell-associated lectin (mDectin)-2 or specific intercellular adhesion molecule–grabbing nonintegrin-related-1 (SIGN-R1), but not mDectin-1, using a cell-reporter assay, as also confirmed by atomic force spectroscopy. We characterized the N-glycosylation profile of mouse colonic mucin (Muc)-2 by MS and showed that the interaction with mDectin-2 was mediated by high-mannose N-glycans. Furthermore, we observed Gal-3 binding to the 3 C-type lectins by force spectroscopy. We showed that mDectin-1, mDectin-2, and SIGN-R1 are decorated by N-glycan structures that can be recognized by the carbohydrate recognition domain of Gal-3. These findings provide a structural basis for the role of mucins in mediating immune responses and new insights into the structure and function of major mammalian lectins.—Leclaire, C., Lecointe, K., Gunning, P. A., Tribolo, S., Kavanaugh, D. W., Wittmann, A., Latousakis, D., MacKenzie, D. A., Kawasaki, N., Juge, N. Molecular basis for intestinal mucin recognition by galectin-3 and C-type lectins

    Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus

    Get PDF
    Ruminococcus gnavus is a human gut symbiont which ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid binding carbohydrate binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis, and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 b-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut

    Membrane-enclosed multienzyme (MEME) synthesis of 2,7-anhydro-sialic acid derivatives

    Get PDF
    Naturally occurring 2,7-anhydro-alpha-N-acetylneuraminic acid (2,7-anhydro-Neu5Ac) is a transglycosylation product of bacterial intramolecular trans-sialidases (IT-sialidases). A facile one-pot two-enzyme approach has been established for the synthesis of 2,7-anhydro-sialic acid derivatives including those containing different sialic acid forms such as Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The approach is based on the use of Ruminoccocus gnavus IT-sialidase for the release of 2,7-anhydro-sialic acid from glycoproteins, and the conversion of free sialic acid by a sialic acid aldolase. This synthetic method, which is based on a membrane-enclosed enzymatic synthesis, can be performed on a preparative scale. Using fetuin as a substrate, high-yield and cost-effective production of 2,7-anhydro-Neu5Ac was obtained to high-purity. This method was also applied to the synthesis of 2,7-anhydro-Neu5Gc. The membrane-enclosed multienzyme (MEME) strategy reported here provides an efficient approach to produce a variety of sialic acid derivatives

    Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont <i>Ruminococcus gnavus</i>

    No full text
    Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 β-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut.</p

    Border Cave: A 227,000-year-old archive from the southern African interior

    Full text link
    In 2015, which marked 35 years since Beaumont had worked at the site, we renewed excavations at Border Cave. Our primary aims were to reassess the stratigraphic context of the sedimentary and cultural sequence, gain insight into site formation processes, make a detailed study of organic remains, identify long term cultural trends, and characterize expressions of complex behaviour and innovation. This contribution serves as an update on activities conducted in 2018 and 2019 and provides an overview of our research findings to date, placing them in the broader context of the Middle Stone Age in southern Africa. New luminescence ages based on feldspar grains in the sedimentary sequence are in broad agreement with the previous chronology established for the site. Geoarchaeology and faunal taphonomy have started to elucidate site formation processes, showing that the members should not be considered as homogeneous units, and that associated formation interpretations established by Beaumont simplifications that are not representative of the diverse site formation processes active in the This finding is supported by lithic analysis of the Member 2 WA assemblage that shows technology between artefacts from the top, middle, and lower part of the same member. In lithic artefacts from the middle and lower part of Member 2 WA show continuities with the lithics the underlying Members 3 BS and 1 RGBS, which were attributed by Beaumont to a different Grass mats/bedding layers are preserved throughout the sequence, the oldest of which dates to ~200 ka
    corecore