124 research outputs found

    Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: community structure relative to distance from canals

    Get PDF
    Anthropogenic alterations of natural hydrology are common in wetlands and often increase water permanence, converting ephemeral habitats into permanent ones. Since aquatic organisms segregate strongly along hydroperiod gradients, added water permanence caused by canals can dramatically change the structure of aquatic communities. We examined the impact of canals on the abundance and structure of wetland communities in South Florida, USA. We sampled fishes and macroinvertebrates from marsh transects originating at canals in the central and southern Everglades. Density of all aquatic organisms sampled increased in the immediate proximity of canals, but was accompanied by few compositional changes based on analysis of relative abundance. Large fish (\u3e8 cm), small fish (\u3c8 \u3ecm) and macroinvertebrates (\u3e5 mm) increased in density within 5 m of canals. This pattern was most pronounced in the dry season, suggesting that canals may serve as dry-down refugia. Increases in aquatic animal density closely matched gradients of phosphorus enrichment that decreased with distance from canals. Thus, the most apparent impact of canals on adjacent marsh communities was as conduits for nutrients that stimulated local productivity; any impact of their role as sources of increased sources of predators was not apparent. The effect of predation close to canals was overcompensated by increased secondary productivity and/or immigration toward areas adjacent to canals in the dry season. Alternatively, the consumptive effect of predatory fishes using canals as dry-season refuges is very small or spread over the expanse of marshes with open access to canals

    A Suite of Prey Traits Determine Predator and Nutrient Enrichment Effects in a Tri-Trophic Food Chain

    Get PDF
    Predation, predation risk, and resource quality affect suites of prey traits that collectively impact individual fitness, population dynamics, and community structure. However, studies of multi-trophic level effects generally focus on a single prey trait, failing to capture trade-offs among suites of covarying traits that govern population responses and emergent community patterns. We used structural equation models (SEM) to summarize the non-lethal and lethal effects of crayfish, Procambarus fallax, and phosphorus (P) addition, which affected prey food quality (periphyton), on the interactive effects of behavioral, morphological, developmental, and reproductive traits of snails, Planorbella duryi. Univariate and multivariate analyses suggested trade-offs between production (growth, reproduction) and defense (foraging behavior, shell shape) traits of snails in response to non-lethal crayfish and P addition, but few lethal effects. SEM revealed that non-lethal crayfish effects indirectly limited per capita offspring standing stock by increasing refuge use, slowing individual growth, and inducing snails to produce thicker, compressed shells. The negative effects of non-lethal crayfish on snails were strongest with P addition; snails increased allocation to shell defense rather than growth or reproduction. However, compared to ambient conditions, P addition with non-lethal crayfish still yielded greater per capita offspring standing stock by speeding individual snail growth enabling them to produce more offspring that also grew faster. Increased refuge use in response to non-lethal crayfish led to a non-lethal trophic cascade that altered the spatial distribution of periphyton. Independent of crayfish effects, snails stimulated periphyton growth through nutrient regeneration. These findings illustrate the importance of studying suites of traits that reveal costs associated with inducing different traits and how expressing those traits impacts population and community level processes

    When is an herbivore not an herbivore? Detritivory facilitates herbivory in a freshwater system

    Get PDF
    Herbivory is thought to be an inefficient diet, but it independently evolved from carnivorous ancestors in many metazoan groups, suggesting that plant‐eating is adaptive in some circumstances. In this study, we tested two hypotheses to explain the adaptive evolution of herbivory: (i) the Heterotroph Facilitation hypothesis (herbivory is adaptive because herbivores supplement their diets with heterotrophic microbes); and (ii) the Lipid Allocation hypothesis (herbivory is adaptive because algae, which have high lipid concentrations, are nutritionally similar to carnivory). We tested these hypotheses using enclosure cages placed in the Everglades and stocked with Sailfin Mollies (Poecilia latipinna), a native herbivore. Using shading and phosphorus addition (P), we manipulated the heterotrophic microbe and lipid composition of colonizing epiphyton and examined the effects of varying food quality on Sailfin Molly life history. Epiphyton grown in “shade only” conditions had a 55% increase in bacterial fatty acids and 34% lower ratios of saturated + monounsaturated to polyunsaturated fatty acids relative to the other treatments. Ratio of autotroph to heterotroph biovolume varied throughout the experiment, with a 697% increase at 3 weeks and 98% decrease at 6 weeks compared to the other treatments. Gut contents revealed that fish fed selectively on epiphyton to compensate for apparent deficiencies in the available food. Fish raised in “shade only” cages experienced the highest survival, which was best explained by autotrophic biovolume and algal‐ and bacterial‐derived fatty acids at 3 weeks (2–6× more likely than alternative models with ∆AICc \u3e 2.00), and by percentage of bacterial fatty acids in the diet at 6 weeks (3–8× more likely than alternative models with ∆AICc \u3e 2.00). There were no differences in fish growth among treatments. Autotrophic lipids play a role in early fish life history, but we did not find these to be the best predictors of life history later in the juvenile period. Instead, heterotrophic lipids facilitated the herbivorous diet and enhanced survival of juvenile fish in our experiment. Bacterial fatty acid content of the diet promoted herbivore survival, consistent with the Heterotroph Facilitation hypothesis. This is the first study to explicitly contrast Heterotrophic Facilitation and Lipid Allocation hypotheses for the adaptive evolution of herbivory in an aquatic system

    Signal from the noise: model‐based interpretation of variable correspondence between active and passive samplers

    Get PDF
    Combining information from active and passive sampling of mobile animals is challenging because active‐sampling data are affected by limited detection of rare or sparse taxa, while passive‐sampling data reflect both density and movement. We propose that a model‐based analysis allows information to be combined between these methods to interpret variation in the relationship between active estimates of density and passive measurements of catch per unit effort to yield novel information on activity rates (distance/time). We illustrate where discrepancies arise between active and passive methods and demonstrate the model‐based approach with seasonal surveys of fish assemblages in the Florida Everglades, where data are derived from concurrent sampling with throw traps, an enclosure‐type sampler producing point estimates of density, and drift fences with unbaited minnow traps that measure catch per unit effort (CPUE). We compared incidence patterns generated by active and passive sampling, used hierarchical Bayesian modeling to quantify the detection ability of each method, characterized interspecific and seasonal variation in the relationship between density and passively measured CPUE, and used a predator encounter‐rate model to convert variable CPUE–density relationships into ecological information on activity rates. Activity rate information was used to compare interspecific responses to seasonal hydrology and to quantify spatial variation in non‐native fish activity. Drift fences had higher detection probabilities for rare and sparse species than throw traps, causing discrepancies in the estimated spatial distribution of non‐native species from passively measured CPUE and actively measured density. Detection probability of the passive sampler, but not the active sampler, varied seasonally with changes in water depth. The relationship between CPUE and density was sensitive to fluctuating depth, with most species not having a proportional relationship between CPUE and density until seasonal declines in depth. Activity rate estimates revealed interspecific differences in response to declining depths and identified locations and species with high rates of activity. We propose that variation in catchability from methods that passively measure CPUE can be sources of ecological information on activity. We also suggest that model‐based combining of data types could be a productive approach for analyzing correspondence of incidence and abundance patterns in other applications

    Indirect and direct controls of macroinvertebrates and small fish by abiotic factors and trophic interactions in the Florida Everglades

    Get PDF
    1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2.  We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3.  The best model included bottom-up and top-down effects among trophic groups and supported top-down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom-up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4.  Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top-down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom-up-only model

    Seasonal Fish Dispersal in Ephemeral Wetlands of the Florida Everglades

    Get PDF
    We hypothesized that fishes in short-hydroperiod wetlands display pulses in activity tied to seasonal flooding and drying, with relatively low activity during intervening periods. To evaluate this hypothesis, sampling devices that funnel fish into traps (drift fences) were used to investigate fish movement across the Everglades, U.S.A. Samples were collected at six sites in the Rocky Glades, a seasonally flooded karstic habitat located on the southeastern edge of the Everglades. Four species that display distinct recovery patterns following drought in long-hydroperiod wetlands were studied: eastern mosquitofish (Gambusia holbrooki) and flagfish (Jordanella floridae) (rapid recovery); and bluefin killifish (Lucania goodei) and least killifish (Heterandria formosa) (slow recovery). Consistent with our hypothesized conceptual model, fishes increased movement soon after flooding (immigration period) and just before drying (emigration period), but decreased activity in the intervening foraging period. We also found that eastern mosquitofish and flagfish arrived earlier and showed stronger responses to hydrological variation than either least killifish or bluefin killifish. We concluded that these fishes actively colonize and escape ephemeral wetlands in response to flooding and drying, and display species-specific differences related to flooding and drying that reflect differences in dispersal ability. These results have important implications for Everglades fish metacommunity dynamics

    The Aquatic Heteroptera (Hemiptera) of Marshes in the Florida Everglades

    Get PDF
    The Everglades is a large subtropical wetland that has been modified heavily by humans and now is undergoing restoration. Aquatic and semiaquatic Heteroptera (Hemiptera) in the infraorders Gerromorpha and Nepomorpha were collected in the Florida Everglades using standardized 1-m2throw-traps. Sampling efforts were conducted in marshes distributed from southern Everglades National Park, north throughout the Water Conservation Areas to Loxahatchee National Wildlife Refuge. In total, 12,833 individuals were identified representing 17 species in 13 genera and 8 families (Belostomatidae, Corixidae, Gerridae, Mesoveliidae, Naucoridae, Nepidae, Veliidae). The naucorid Pelocoris femoratus (Palisot de Beauvois) (Hemiptera: Naucoridae) was by far the most abundant species, whereas 2 other species, Belostoma lutarium (StÄl) (Hemiptera: Belostomatidae) and Neogerris hesione Kirkaldy (Hemiptera: Gerridae), were widespread but less abundant. Two species, Abedus immaculatus (Say) (Hemiptera: Belostomatidae) and Pelocoris balius La Rivers (Hemiptera: Naucoridae) had localized distributions, whereas all other species were collected rarely. We discuss the abundance and distribution of species recorded, along with unique traits and the biology of the aquatic Heteroptera in the Everglades and implications for the restoration of the Everglades

    Relative roles of dispersal dynamics and competition in determining the isotopic niche breadth of a wetland fish

    Get PDF
    1. The niche variation hypothesis predicts that among-individual variation in niche use will increase in the presence of intraspecific competition and decrease in the presence of interspecific competition. We sought to determine whether the local isotopic niche breadth of fish inhabiting a wetland was best explained by competition for resources and the niche variation hypothesis, by dispersal of individuals from locations with different prey resources or by a combination of the two. We analysed stable isotopes of carbon and nitrogen as indices of feeding niche and compared metrics of within-site spread to characterise site-level isotopic niche breadth. We then evaluated the explanatory power of competing models of the direct and indirect effects of several environmental variables spanning gradients of disturbance, competition strength and food availability on among-individual variation of the eastern mosquitofish (Gambusia holbrooki). 2. The Dispersal model posits that only the direct effect of disturbance (i.e. changes in water level known to induce fish movement) influences among-individual variation in isotopic niche. The Partitioning model allows for only direct effects of local food availability on among-individual variation. The Combined model allows for both hypotheses by including the direct effects of disturbance and food availability. 3. A linear regression of the Combined model described more variance than models limited to the variables of either the Dispersal or Partitioning models. Of the independent variables considered, the food availability variable (per cent edible periphyton) explained the most variation in isotopic niche breadth, followed closely by the disturbance variable (days since last drying event). 4. Structural equation modelling provided further evidence that the Combined model was best supported by the data, with the Partitioning and the Dispersal models only modestly less informative. Again, the per cent edible periphyton was the variable with the largest direct effect on niche variability, with other food availability variables and the disturbance variable only slightly less important. Indirect effects of heterospecific and conspecific competitor densities were also important, through their effects on prey density. 5. Our results support the Combined hypotheses, although partitioning mechanisms appear to explain the most diet variation among individuals in the eastern mosquitofish. The results also support some predictions of the niche variation hypothesis, although both conspecific and interspecific competition appeared to increase isotopic niche breadth in contrast to predictions that interspecific competition would decrease it. We think this resulted from high diet overlap of co-occurring species, most of which consume similar macroinvertebrates
    • 

    corecore