Florida International University FIU Digital Commons

FCE LTER Journal Articles

FCE LTER

1-1-2011

Indirect and direct controls of macroinvertebrates and small fish by abiotic factors and trophic interactions in the Florida Everglades

Brooke L. Sargeant Department of Biological Sciences and the Southeast Environmental Research Center, Florida International University

Evelyn E. Gaiser Department of Biological Sciences and the Southeast Environmental Research Center, Florida International University, gaisere@fiu.edu

Joel C. Trexler Department of Biological Sciences and the Southeast Environmental Research Center, Florida International University, trexlerj@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/fce_lter_journal_articles Part of the Life Sciences Commons

Recommended Citation

Sargeant, B., E.E. Gaiser, J.C. Trexler. 2011. Indirect and direct controls of macroinvertebrates and small fish by abiotic factors and trophic interactions in the Florida Everglades. Freshwater Biology 56(11): 2334-2346.

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This work is brought to you for free and open access by the FCE LTER at FIU Digital Commons. It has been accepted for inclusion in FCE LTER Journal Articles by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Indirect and direct controls of macroinvertebrates and small fish by abiotic factors and trophic interactions in the Florida Everglades

Journal:	Freshwater Biology
Manuscript ID:	FWB-P-Sep-10-0443.R2
Manuscript Type:	Standard Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Sargeant, Brooke; Florida International University, Department of Biological Science Gaiser, Evelyn; Florida International University, Department of Biological Science Trexler, Joel; Florida International University, Department of Biological Science
Keywords:	Wetlands / mires / bogs / marshes < Habitat, Community < Level of Organisation, Food webs < Process / Approach / Methods, Trophic cascades < Process / Approach / Methods, Fish < Taxonomic Group / Assemblage, Attached algae < Taxonomic Group / Assemblage, Invertebrates < Taxonomic Group / Assemblage

SCHOLARONE[™] Manuscripts

Freshwater Biology

1		
2		
3	1	
4	1	
5		
6	2	
7		
8	2	
0	3	
9 10		
10	4	
11		
12	~	
13	5	
14		
15	6	Indirect and direct controls of macroinvertebrates and small fish by abiotic factors
16	Ū	man eer and an eer controls of macrom ver costates and sman rish by astoric factors
17	_	
18	7	and trophic interactions in the Florida Everglades
19		
20	8	
20	0	
21		
22	9	
23		
24	10	Prooka I. Sargaant Evolum F. Gaisar and Ical C. Travlar
25	10	DIOOKE L. Sargeant, Everyn E. Gaiser and Joer C. Trexier
26		
27	11	Department of Biological Sciences and the Southeast Environmental Research Center
28		
29	10	
30	12	Florida International University
31		
30	13	FL, USA
22	10	
33		
34	14	
35		
36	15	Corresponding author:
37	16	Loal C. Traylor
38	10	Joer C. Trexier
39	17	Department of Biological Sciences
40	18	Florida International University
41	19	11200 SW 8th St
42	20	Miomi EL 22100
43	20	
44	21	Email: trexlerj@fiu.edu
45	22	Phone: 1-305-348-1966
46	$\overline{2}$	Eax: 1-305-348-1986
- 10 //7	23	$1 u_{\Lambda}, 1 J U J^{-} J^{+} U^{-} 1 J U U$
-+ <i>1</i> /0	24	
40		
49	25	Abbreviated title: Indirect and direct controls of Everglades consumers
50		
51		
52	26	Key words: indirect effects, bottom-up and top-down control, hydrological disturbance,
53		
54	27	phosphorus, Florida Everglades
55	<i>~ 1</i>	phophotas, i londa Diel Stados
56		
57	28	
58		
59		
60		
00		

2
3
4
5
6
7
8
ă
3
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
22
33
34
35
36
37
38
39
40
- - -0 // 1
41
42
43
44
45
46
47
48
10
49 50
50
51
52
53
54
55
56
57
5/
58
59
60

29 Summary

30 1. The roles of nutrients, disturbance and predation in regulating consumer densities 31 have long been of interest, but their indirect effects have rarely been quantified in 32 wetland ecosystems. The Florida Everglades contains gradients of hydrological 33 disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with 34 densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small 35 fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, 36 most causal relationships have yet to be quantified. 37 2. We sampled periphyton (content and community structure) and consumer (small 38 omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting 39 periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions 40 and compared our data to seven *a priori* structural equation models. 41 3. The best model included bottom-up and top-down effects among trophic groups and 42 supported top-down control of infauna by omnivores and predators that cascaded to 43 periphyton biomass. The next best model included bottom-up paths only and allowed 44 direct effects of periphyton on omnivore density. Both models suggested a positive 45 relationship between small herbivores and small omnivores, indicating that predation was 46 unable to limit herbivore numbers. Total effects of time following flooding were 47 negative for all three consumer groups even when both preferred models suggested 48 positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were 49 positive for consumers and generally larger than those of hydrological disturbance, and 50 were mediated by changes in periphyton content.

Freshwater Biology

1	
2	
3	
4	
5	
5	
6	
7	
8	
q	
10	
10	
11	
12	
13	
1/	
1-	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
27	
20	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
00	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
30	
57	
58	
59	
60	
<u></u>	

4. Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top-down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom-up only model.

74 Introduction

How abiotic and biotic factors influence populations and communities has long been a central question in community ecology (e.g., Menge & Sutherland, 1987; Pace et al., 1999), but understanding their interactions and indirect effects as mediated by species interactions remains a critical step to developing predictive models of how populations are controlled and respond to environmental change (Wootton, Parker, & Power, 1996; Kneitel & Chase, 2004; Gotelli & Ellison, 2006). To identify the mechanisms by which environmental gradients influence communities, they must be examined in the context of food webs and using methods that can explore their interactions and community-level effects. We used structural equation modeling, a multivariate technique that explicitly examines indirect and direct effects, to determine how hydrological disturbance, nutrients and trophic interactions influence primary production and densities of small consumers (predominantly invertebrates and small fish) in the Florida Everglades. Studies of aquatic systems have revealed diverse effects of disturbance, productivity and predation on food webs, densities and community structure (e.g., Power, Parker, & Wootton, 1996; Shurin et al., 2002; Chase, 2003). In pond and wetland ecosystems, hydrological disturbance is expected to shape community structure by permanently limiting or periodically reducing biota, especially larger organisms (Wellborn, Skelly, & Werner, 1996). Disturbance in the form of drought can decrease macroinvertebrate and fish densities through direct mortality or reduction of food biomass. In habitats where larger organisms are more susceptible to drying conditions, droughts may actually increase macroinvertebrate densities by removing predatory fish (Corti, Kohler, & Sparks, 1997; Liston, 2006; Dorn, 2008). The effects of nutrient

Page 5 of 50

Freshwater Biology

1
2
3
4
5
6
0
1
8
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ 24
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
20
30
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59
60

97	enrichment on fish and invertebrate densities can depend on disturbance, the strength of
98	trophic interactions, and the degree to which predators can reduce prey populations. For
99	example, while fish biomass generally increases with nutrients, similar increases in
100	invertebrate biomass may hinge on whether fish are present and limit invertebrate
101	densities (Wootton & Power, 1993; Marks, Power, & Parker, 2000; Liston, 2006).
102	Increasing nutrients can also encourage successional changes toward well-defended but
103	competitively inferior invertebrates and thereby reduce the strength of trophic cascades
104	by fish (Chase, 2003). Relatively few studies have addressed these interactive effects and
105	indirect relationships in wetlands, leaving such questions unanswered for many systems.
106	The Florida Everglades is a highly oligotrophic marsh ecosystem with gradients
107	of anthropogenic nutrient (phosphorus) enrichment and hydrological disturbance (drying
108	of the marsh) (Gunderson & Loftus, 1993; Davis, 1994). Drying events cause direct
109	mortality of fish and invertebrates as well as movements toward deeper refuges, and thus
110	community trajectories in the Everglades reveal shifts from abiotic to biotic control as a
111	function of time following a disturbance (Trexler, Loftus, & Perry, 2005), similar to
112	patterns in floodplain habitats (Winemiller, 1996). The density of small fish typically
113	increases with time following a drying event (Trexler et al., 2002, 2005; Dorn, 2008) and
114	often with nutrient levels (Turner et al., 1999; Trexler et al., 2002; Gaiser et al., 2005).
115	Similarly, invertebrates often increase coincident with hydroperiod and nutrients,
116	although this pattern varies with taxa, sampling method, microhabitat and nutrient level
117	(Rader & Richardson, 1994; McCormick, Shuford, & Rawlik, 2004; Liston, 2006; King
118	& Richardson, 2007; Liston, Newman, & Trexler, 2008). It is generally presumed that
119	nutrients amplify fish and macroinvertebrate densities indirectly via stimulation of

1	
2	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
39	
40	
<u>_</u> 11	
40	
42	
43	
44	
45	
46	
47	
48	
10	
+9 E0	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	

142

120	periphyton production (aggregations of benthic algae, detritus, fungi and bacteria), a
121	major source of primary production for the food web and habitat for invertebrates.
122	Nutrient enrichment, localized around areas of water inflow, alters algal community
123	composition and consequently changes the periphyton physical structure and constitution
124	(e.g., from floating calcareous mats to epiphytic filamentous green algae aggregates)
125	(McCormick et al., 1996; Gaiser et al., 2005, 2006). Hydrology may also shape
126	periphyton community structure (Gottlieb, Richards, & Gaiser, 2006; Thomas et al.,
127	2006). The maintenance of large expanses of periphyton and apparent limits on
128	macroinvertebrate densities suggest that fish predation on invertebrates may generate a
129	trophic cascade (Turner et al., 1999; Liston, 2006).
130	While these general trends in Everglades communities have been identified,
131	indirect and direct effects and food-web interactions have not yet been explicitly
132	quantified in natural contexts and at large spatial scales. Anthropogenic activities have
133	modified the Everglades through nutrient enrichment and alteration of hydrological
134	patterns (Davis, 1994), and the Everglades is now the subject of a large-scale restoration
135	project (Davis & Ogden, 1994). Using structural equation modeling (path analysis) and a
136	model comparison approach, we identified possible causal models quantifying the
137	indirect, direct and total effects of drought, nutrient enrichment and trophic interactions
138	on small aquatic consumers in the Everglades. This analysis provides greater insight into
139	possible mechanistic models describing how basal consumer densities are controlled in
140	this ecosystem, informing restoration policies and practices.
141	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
19	
∠∪ 21	
∠ i 22	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
57	
52 52	
54	
55	
56	
57	
58	
59	
60	
~ ~	

143	Methods
144	Field Sampling and Sample Processing
145	In November and December 2005, we sampled fish, amphibian and aquatic invertebrate
146	communities in 28 sites across the Florida Everglades (Everglades National Park, Water
147	Conservation Areas, and Loxahatchee National Refuge; approximately 25°19'N,
148	80°56'W) (Fig. 1). Sampling sites were selected from a larger set of possible study sites
149	identified by a Generalized Random Tessellation Stratified (GRTS) survey design
150	(Stevens and Olsen 2003) applied to the Greater Everglades ecosystem (Scheidt and
151	Kalla 2007). The GRTS design provides a specially balanced sample of the ecosystem;
152	sites were selected for this study because they were located in wet-prairie slough habitats
153	that are the focus of management concern because of their role as foraging habitats for
154	wading birds (Trexler and Goss 2009); wet prairie sloughs are characterized by
155	spikerush-dominated (Eleocharis cellulosa Torr.) emergent vascular plants (Gunderson
156	1994) and large standing stocks of periphyton mats formed by benthic algae, detritus,
157	fungi and bacteria (Turner et al. 1999). Sargeant et al. (2010) and Table 1 provide further
158	description of the conditions at these sites.
159	We sampled small fish and amphibians (<8 cm) and large invertebrates (snails,
160	crayfish, grass shrimp, and large insects, >5 mm) using a standardized throw-trap
161	sampling protocol (Jordan, Coyne, & Trexler, 1997) with 1-m ² throw traps enclosed by 2-
162	mm mesh. Traps were cleared using a bar seine (2-mm mesh) and dip nets (1- and 5-mm
163	mesh), and vertebrates were euthanized by immersion in an MS-222 (tricaine
164	methanesulfonate) bath. Three throw-trap samples were collected per site. To sample
165	macroinvertebrate infauna (including nematodes, copepods, and cladocerans, inhabiting

166	periphyton mats, typically 0.25-8mm long), periphyton mat samples (6-cm diameter
167	cores from top to bottom of the mats, typically 2.5 cm deep) were collected from within
168	each throw trap (Liston and Trexler 2005). All animals captured were kept on ice in the
169	field, and then frozen for storage before identification and enumeration in the lab. The
170	densities (number \cdot m ⁻²) of small primary and secondary consumers were determined for
171	each site by calculating the mean of the counts from the three throw-trap samples.
172	Herbivores included herbivorous fish, tadpoles, beetles, mayfly larvae and snails. Small
173	fish, newts, sirens, beetle larvae, odonate larvae, insects, crayfish and shrimp were
174	considered secondary consumers and are omnivorous or carnivorous in the Everglades.
175	Periphyton subsamples (15-30 mL) were haphazardly selected from thawed cores and
176	two different workers identified macroinvertebrates under a light microscope. Periphyton
177	macroinvertebrate density (number \cdot m ⁻²) (Liston, 2006) was determined for each site
178	using the means of the three periphyton core samples. Details on species collected, their
179	densities and frequency of occurrence at sites, and their trophic classification (for throw-
180	trap organisms) are available in Table S1 of Supporting Information Appendix S1. All
181	trophic assignments were based on published and unpublished studies reporting gut
182	content (Gunderson and Loftus, 1993; Loftus 1999), stable isotopic (Loftus 1999;
183	Williams and Trexler 2006; Sargeant et al. 2010) and fatty acid profile (LL Belicka,
184	personal communication) analyses of specimens collected from the Everglades. Feeding
185	relationships of Everglades aquatic animals are complex, with widespread omnivory and
186	intraguild predation; a small fraction of animals sampled for this study are exclusively
187	carnivores (e.g., dragonfly naiads) feeding on other omnivores and herbivores. For
188	simplicity sake, we have lumped these animals as 'omnivores' for this study, consistent

Freshwater Biology

189 with Morin's (1999) definition that omnivores are species that feed at more than one190 trophic level.

We determined phosphorus levels, periphyton composition and hydrological disturbance estimates corresponding to each of our sites. Periphyton volume (ml) was estimated in the field by placing periphyton in graduated cylinders, and periphyton aerial cover (%) was measured as the estimated percentage of the surface area enclosed by the throw trap that was covered by periphyton. Separate periphyton samples (3 samples per site, corresponding to locations of throw-trap samples) were obtained to determine total phosphorus content (TP) ($\mu g \cdot g \, dr y^{-1}$), ash-free dry mass (AFDM) ($g \cdot m^{-2}$) as an estimate of biomass, percent nitrogen and organic content, chlorophyll a concentration ($\mu g \cdot g dr y^{-1}$) and density ($\mu g \cdot m^{-2}$) and algal species composition as described by Gaiser *et al.* (2006; see also Stevenson et al. 2002). Total phosphorus from periphyton is a valuable indicator of nutrient enrichment because phosphorus is quickly absorbed by biota and does not remain in the water column (Gaiser *et al.*, 2006). Algal species were categorized as green algae, diatoms, non-filamentous bluegreen algae (cyanobacteria), filamentous blugreen algae, and the combined relative abundance of diatoms and green algae was used in analyses because those species are thought to be more palatable to consumers (Geddes & Trexler, 2003). Using the Everglades Depth Estimation Network (EDEN) hydrological estimation tool (http://sofia.usgs.gov/eden/stationlist.php), we calculated time since flooding as the number of days since flooding after the most recent drying event (water levels <5 cm). Using this as a measure of time to recover following a drought, hydrological disturbance is inversely related to time since flooding. Sampling occurred

in the late wet season when marshes were near peak water depths following summerrains.

 214 Data Analysis

To examine complex interactions between these variables in a food-web context, we used structural equation modeling to identify relationships between TP levels, time since flooding, periphyton AFDM, the relative abundance of green algae and diatoms, the density of periphyton macroinvertebrate infauna and the densities of small consumers (fish and large invertebrates from throw-trap samples). Structural equation modeling enables analysis of systems involving multiple simultaneous cause-effect relationships, in contrast to reductionist approaches that examine these relationships singly, with the potential to improve understanding of interaction networks typical of ecological communities (Grace, 2006). For example, it can be used to identify species interactions and their direct, indirect and total effects (Johnson, Huggins, & DeNoyelles, 1991; Wootton, 1994a,b). This method can be applied to experiments (e.g., Johnson *et al.*, 1991; Wootton, 1994a,b) or observational data recorded along gradients of natural variability (e.g., Elmhagen & Rushton, 2007; Riginos & Grace, 2008). We developed seven *a priori* models describing hypothesized causal mechanisms for how disturbance, productivity and trophic interactions may determine the densities of small consumers via direct and indirect pathways, based on results of previous studies and theoretical expectations (see Supporting Information Appendix S2 for detailed descriptions of each model and rationale). Models were based on bottom-up control only

- 233 or reciprocal relationships (both bottom-up and top-down controls) between consumers

Page 11 of 50

Freshwater Biology

3 4	234	and prey. Specifically, top-down control was proposed between 1) omnivores and
5 6	235	infauna, 2) infauna and periphyton biomass, 3) herbivores and periphyton biomass, and
7 8 9	236	4) omnivores and periphyton biomass. The relationship between herbivores and
10 11	237	omnivores was evaluated by comparing models that contained a causal path from
12 13	238	herbivores to omnivores to models that assumed no causal link between them. We were
14 15 16	239	unable to include a possible top-down relationship between omnivore density and
17 18	240	herbivore density due to empirical underidentification. A model is considered identified
19 20	241	if unique estimates can be determined for all of its parameters, which requires a sufficient
21 22 23	242	number of observed variables given the number of parameters to solve (Grace, 2006). In
24 25	243	some cases, a model can be theoretically identified but empirically underidentified
26 27	244	because of correlations inherent in the data that effectively reduce the number of
28 29 30	245	observations (Kline, 2005; Grace, 2006). However, the small omnivores in question may
31 32	246	be unlikely to limit herbivores of similar size.
33 34	247	Structural equation modeling (path analysis) was conducted using AMOS 7.0
35 36 37	248	(Amos Development Corporation, Spring House, PA, USA). The site was considered the
38 39	249	unit of observation (n=28), with the periphyton, hydrological and consumer variables
40 41 42	250	calculated for each site. All variables were $log_{10}(y + 1)$ transformed to improve
42 43 44	251	univariate normality and reduce nonlinearities in relationships. Despite transformations,
45 46	252	the data continued to show signs of deviation from normality (as indicated by univariate
47 48 40	253	analyses, Mardia's coefficient for multivariate kurtosis, and Mahalanobis d), so we used
49 50 51	254	bootstrapping (based on 2000 bootstrap samples) to test absolute model fit using the
52 53	255	Bollen-Stine chi-square test. When data are highly non-normal, traditional chi-square
54 55 56 57	256	tests of model fit can be overly conservative and the Bollen-Stine chi-square test, which
58		

2	
3	
1	
-	
5	
6	
7	
8	
2	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
24	
21	
22	
23	
24	
27	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
27	
31	
38	
39	
40	
11	
+1	
42	
43	
44	
45	
40	
46	
47	
48	
<u>4</u> 0	
73 E0	
50	
51	
52	
52	
50 E /	
94 	
55	
56	
57	
50	
50	
59	
60	

1

257	uses bootstrapping to determine the probability of model fit, is recommended as an
258	alternative (Byrne, 2000; Grace, 2006). Models were compared using the Bayesian
259	Information Criterion (BIC) (lower BIC values indicate better fit), which weighs
260	improvement in model fit against model complexity (Claeskens & Hjort, 2008). We
261	report BIC instead of the more common Akaike's Information Criterion (AIC) because
262	BIC provides more consistent model selection as model complexity increases; BIC
263	applies a higher penalty than AIC for adding parameters (Claeskens & Hjort, 2008:
264	Chapter 4) and is more conservative than AIC in the presence of model uncertainty
265	(Burnham and Anderson 2010: pp 271-273). Because we used a model-comparison
266	approach, path coefficients are presented, but were not tested for statistical significance
267	(e.g., Gotelli & Ellison, 2006). We present the unstandardized and standardized path
268	coefficients fitted by maximum likelihood for each direct causal path in the final models.
269	Path coefficients in the model represent partial regression coefficients. Reported total
270	effects of environmental gradients are the sum of direct and indirect causal paths. Our
271	approach should be viewed as exploratory and hypothesis-generating rather than
272	confirmatory given our limited trophic specification made necessary by high sample-size
273	requirements of our model fitting and comparison approach.
274	

275 **Results**

Samples contained many of the small aquatic fauna common to the Everglades
(see Table S1 of Supporting Information Appendix S1). Throw-trap samples were
dominated by small fish, grass shrimp, crayfish and dragonfly larvae. Of these, grass
shrimp (*Palaemonetes paludosus*, Gibbes) had the largest mean density across all the

Freshwater Biology

sites of the omnivorous species and was present in more than 70% of the sites. Least killifish (Heterandria formosa, Girard), mosquitofish (Gambusia holbrooki, Girard) and bluefin killifish (*Lucania goodei*, Jordan) were also very common and thus typically contributed notably to omnivore density. Herbivorous fish and large invertebrates were lower in density, dominated by planorbid snails (*Planorbella* spp.) with the highest mean density, and flagfish (Jordanella floridae, Goode and Bean) at the largest number of sites. Cladocerans, nematodes, copepods, water mites, ostracods, amphipods and dipteran larvae comprised the largest numbers of infaunal macroinvertebrates inhabiting periphyton. Larger beetles, dragonfly larvae and snails were less numerous in periphyton and found at fewer sites. Sites spanned a wide range of hydrological and nutrient levels (Table 1), and time since flooding was positively correlated with periphyton TP (Spearman correlation: $r_s =$ 0.68). Consistent with several other studies in the Everglades, many attributes of periphyton were associated with time since flooding and/or periphyton TP (Table 2). Increases in nutrient levels and time since flooding were correlated with decreases in periphyton biomass, periphyton volume and the relative abundances of bluegreen and filamentous bluegreen algae, but also with increases in organic content, chlorophyll a concentration, and the relative abundances of green algae and diatoms. The density of omnivores increased coincident with nutrient levels and (to a lesser extent) recovery time

299 following drought, while infaunal and herbivore densities did not exhibit strong

300 correlations with either variable (Table 2; Figs. 2 and 3).

301 A comparison of model BIC values indicated that one model (Model 6 in
302 Supporting Information Appendix S2) was preferred to the others (the difference between

303	the BIC of this model and the next best model was >2) (Table 3). Two other models
304	(Model 1 and Model 7 in Supporting Information Appendix S2) had slightly higher BIC
305	values, but only Model 6 and Model 1 showed adequate absolute fit to the data (Bollen-
306	Stine chi-square tests were not statistically significant at the 0.05 level; Table 3).
307	In Model 6 (Fig. 4), changes in periphyton biomass and community structure,
308	driven by increasing phosphorus, are transmitted to omnivores indirectly. Increases in
309	the relative abundance of diatoms and green algae, and increases in periphyton biomass,
310	increased infauna density, which in turn had a positive effect on omnivore density.
311	Omnivores had a negative top-down effect on infauna, and infauna had a small but
312	negative effect on periphyton biomass. Both periphyton biomass and the relative
313	abundance of diatoms and green algae were negatively related to herbivore density, while
314	increasing herbivores increased omnivore density with no reciprocal top-down effect.
315	Model 1 (Fig. 5) included only bottom-up effects and incorporated direct effects
316	of periphyton biomass and relative abundance of diatoms and green algae on omnivore
317	density. Direct effects of time since flooding and periphyton TP were generally similar
318	to those in Model 6. Relationships between trophic groups were bottom-up and mostly
319	positive (increases in prey resulted in increases in consumers) or weak, with the
320	exception of herbivores.
321	Some patterns were shared by Model 6 and Model 1. Herbivore density was
322	negatively related to periphyton biomass and the relative abundance of diatoms and green
323	algae in both models. The total effect of periphyton TP was positive for omnivores and
324	herbivores, but was nearly zero for infauna (Table 4). In Model 1 this resulted only from

- 325 phosphorus's effect on periphyton community structure and biomass, but in Model 6 the

Freshwater Biology

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
33	
31	
04 25	
30	
36	
37	
38	
39	
40	
41	
12	
12	
43	
44	
45	
46	
47	
48	
<u>1</u> 0	
50	
50	
51 -	
52	
53	
54	
55	
56	
57	
57	
28	
59	

60

326	negligible total effect of phosphorus was largely driven by top-down effects. Time since
327	flooding increased infauna density and omnivore density directly, but decreased
328	herbivore density directly in both models. However, time since flooding increased
329	periphyton biomass and decreased the relative abundance of diatoms and green algae,
330	making the total effect of hydrological disturbance negative for infauna and omnivores
331	(Table 4). The effect of time since flooding was more complex for herbivores. In Model
332	6, the negative effect was caused by a strong direct path and multiple indirect effects. In
333	Model 1, the total effect was weaker, and the negative direct effect was moderated by
334	positive indirect effects through periphyton. The total effects of periphyton TP on
335	periphyton and consumers were larger than those of time since flooding in both models
336	(Table 4), with the exception of infauna density.

337

338

339 Discussion

340 Using structural equation modeling, we identified two possible mechanistic 341 models describing the effects of nutrient enrichment, disturbance and food-web 342 interactions on small consumers in the Florida Everglades. The best-supported model 343 (Model 6) showed evidence for top-down control of periphyton infauna densities, and 344 suggested that trophic cascades may help maintain periphyton biomass against herbivory in the Everglades. However, the BIC value of Model 1 (a model allowing bottom-up 345 346 effects only and including omnivory) was only slightly higher, indicating that it also 347 deserves consideration. While other studies have illustrated the importance of 348 hydrological disturbance in shaping temporal trends in Everglades aquatic communities,

our findings emphasize a greater role of nutrient gradients in contributing to consumer densities across large spatial scales in the late wet season, when direct effects of previous drying were relatively weak. Further, the structural equation models identified the effects of food quality (indicated by algal community structure) and food or habitat quantity (indicated by periphyton biomass), allowed effects of nutrient enrichment and hydrology to be disentangled, and provided insight into direct versus indirect effects in this system. Both models incorporated bottom-up effects initiated by increases in nutrients (measured by total phosphorus levels in periphyton). Increasing phosphorus appeared to drive compositional changes in periphyton, including shifts in the dominant algal species, the proportion of organic content and the overall biomass and volume of periphyton. These findings mirror those of several other studies correlating phosphorus addition with increases in the relative abundance of diatoms and green algae and organic content, but decreases in the relative abundance of filamentous bluegreen algae and biomass of bluegreen algae and periphyton (McCormick et al., 1996; Gaiser et al., 2005, 2006). The proportion of periphyton comprised of organic material, diatoms and green algae may reflect food quality since these components are probably more palatable than inorganic components, bluegreen algae or filamentous bluegreen algae (Geddes & Trexler, 2003). Phosphorus addition increases these palatable elements, but decreases the total organic biomass of periphyton (e.g., food quantity and habitat for infauna). These changes in periphyton quality and quantity appear to be the indirect link between phosphorus enrichment and consumer densities. In both models, infaunal density directly increased with periphyton biomass and the proportion of green algae and diatoms. In Model 1, where primary production was directly linked to omnivore density,

Page 17 of 50

Freshwater Biology

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
20	
24	
31	
32	
33	
34	
35	
36	
37	
38	
20	
40	
40	
41	
42	
43	
44	
45	
46	
47	
71 10	
40 40	
49	
50	
51	
52	
53	
54	
55	
56	
00	
5/	
58	
59	
60	

372	omnivores responded positively to the relative abundance of diatoms and green algae,
373	and negatively to periphyton biomass (although this latter relationship was quite weak in
374	magnitude). This is in contrast to Model 6, in which changes in food are transmitted to
375	omnivores indirectly through infauna and herbivores. Interestingly, periphyton biomass
376	and the relative abundance of diatoms and green algae had strong negative direct effects
270	on harbiyers density in both models, generally contracting with their effects on informa-
511	on heroivore density in bour models, generally contrasting with their effects on miauna
378	and omnivores. A possible explanation may be found in the composition of the herbivore
379	community; flagfish comprised a significant portion of the herbivores in our samples and
380	they may be poor competitors (Trexler et al., 2005). Nonetheless, herbivore density
381	actually increased with nutrient enrichment (i.e., the total effect of periphyton TP) due to
382	the indirect pathways via periphyton biomass. Both models indicate that the quality of
383	periphyton is as important as total food biomass, consistent with previous work
384	demonstrating an increased ability of some consumers to feed on palatable elements
385	following a physical break-up in the periphyton mat (Geddes & Trexler, 2003).
386	In the Everglades, the maintenance of large expanses of periphyton mats and
387	apparent limits on infaunal density even in the face of nutrient enrichment may be
388	evidence for a trophic cascade (Turner et al., 1999; Liston, 2006). Trophic cascades are
389	widespread in aquatic systems (Shurin et al., 2002), often driven by predation of
390	macroinvertebrates by fish (e.g., Wootton & Power, 1993). Few studies of top-down
391	effects have been conducted in wetlands, but some show that small fish and insect
392	predators can reduce invertebrate numbers (Batzer, 1998; Peck & Walton, 2008), while
393	others have not found effects of small predators (Corti et al., 1997). Empirical support
394	for trophic cascades in the Everglades has been lacking (Dorn, Trexler, & Gaiser, 2006;

395	Chick, Geddes, & Trexler, 2008). In the current study, small fish and invertebrates, but
396	not infauna, increased with nutrients, a pattern potentially consistent with a trophic
397	cascade based on predictions from food web theory (Power, 1992). The relative strength
398	of Model 6 suggests that both bottom-up and top-down forces are important in shaping
399	the densities of basal consumers in the Everglades. Like all the models considered,
400	Model 6 includes bottom-up relationships between primary production (periphyton) and
401	higher trophic levels. Increases in phosphorus levels drive changes in periphyton
402	community structure, increasing the proportion of highly palatable algal species while
403	simultaneously reducing the total organic biomass of periphyton. Model 6 assumes that
404	these changes in primary production are transmitted indirectly, through primary
405	consumers (infaunal macroinvertebrates and herbivorous fish, invertebrates, and
406	tadpoles), to omnivorous fish and invertebrates. Omnivores, in turn, limit infauna
407	density, and infauna density has a negative effect on periphyton biomass. These
408	relationships are likely to underpin the pattern of increasing omnivore density, but not
409	infauna density, with nutrient enrichment (e.g., Fig. 3). The positive effect of omnivores
410	(through macroinvertebrate infauna) on periphyton biomass implies that a trophic cascade
411	helps maintain periphyton mats, but herbivores may simultaneously act to stimulate
412	periphyton growth (see below), indicating that multiple factors are important in
413	controlling periphyton biomass.
414	This contrasts with the exclusively bottom-up structure of Model 1. The fact that
415	two very different models had similar support may be explained by the role of omnivory.
416	Model 1 allows for omnivores to feed directly on periphyton, and this may result in
417	similar net effects of periphyton TP as are found in Model 6 in which omnivory is

Freshwater Biology

י ר		
2		
3		
4		
5		
6		
7		
י ה		
0		
9		
1	0	
1	1	
1	2	
1	<u>ק</u>	
4	J ⊿	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
ว	ñ	
<u>~</u> っ	1	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
<u>っ</u>	7	
2	<i>י</i>	
2	8	
2	9	
3	0	
3	1	
ŝ	2	
2	2	
ა ი	J ⊿	
3	4	
3	5	
3	6	
3	7	
3	8	
2	a	
ں ۸	3	
4	Ū.	
4	1	
4	2	
4	3	
4	4	
4	5	
т Л	e R	
4	0 7	
4	1	
4	8	
4	9	
5	0	
5	1	
5	2	
5	2 2	
о г	3	
5	4	
5	5	
5	6	
5	7	
5	Ŕ	
5	ი ი	
C	J	

60

removed. Trophic cascades are generally thought to be limited by omnivory (Polis &
Strong, 1996), and could also be restricted in the Everglades by the associative resistance
afforded palatable algae by the physical or algal composition of periphyton mats (Geddes
& Trexler, 2003; Chick *et al.*, 2008). However, past studies have not found support that
omnivorous fishes and invertebrates assimilate more periphyton as nutrients increase
(Williams & Trexler, 2006).

424 Herbivorous small fish and invertebrates played a different role than other 425 consumer groups in both models. Herbivore density had a positive effect on omnivore 426 density, presumably via predation where predators were unable to limit prey numbers. 427 The similar size of individuals in the omnivore and herbivore groups may have prevented 428 top-down control; some of the herbivores may have been too large or well-defended for 429 the small omnivores to consume them. In Model 6, herbivores had a positive top-down 430 effect on periphyton biomass, seemingly inconsistent with an expected predator-prey 431 relationship. While a negative effect of predation may be more expected, positive effects 432 could occur through nutrient regeneration (Geddes & Trexler, 2003). 433 Previous studies of Everglades fauna have frequently found negative correlations

433 Previous studies of Evergiades rauna have frequently found negative correlations
434 between small fish and/or macroinvertebrate densities and measures of disturbance
435 (Trexler *et al.*, 2002, 2005; Liston, 2006). The direct effect of time since flooding was
436 positive for infauna and omnivore density in both models, suggesting their numbers
437 increased with recovery time following droughts. However, the opposite pattern was
438 found for herbivores, probably stemming from dominance of flagfish, which tend to
439 decrease with time following droughts (Trexler *et al.*, 2005). Time since flooding was
440 important in contributing to algal community structure, reducing the proportion of

2
3
1
-
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
21
28
29
30
31
32
33
34
25
30
36
37
38
39
40
<u>4</u> 1
יד ⊿ר∕
42 40
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
51
20
59
60

1

441	diatoms and green algae. Our results are potentially inconsistent with a previous study
442	(Gottlieb et al., 2006) reporting higher relative abundance of diatoms in long-hydroperiod
443	sites, but that study did not separate effects of phosphorus from those of hydrology,
444	which tend to be correlated. Despite a negative direct effect, the overall correlation
445	between time since flooding and the relative abundance of green algae and diatoms was
446	positive, possibly explaining the differences in results between studies. Effects of
447	hydrological disturbance were somewhat weaker than the effects of nutrient enrichment,
448	and the total effect of time since flooding was negative for all three consumer groups as a
449	result of numerous indirect effects. Reduced effects of hydrology relative to nutrients in
450	this study may have resulted from focusing on spatial, rather than temporal, variability
451	and by sampling at the end of the wet season when few sites had been recently dry. This
452	study also used partial regression coefficients to estimate effects of hydrology and
453	nutrients, possibly resulting in different findings than studies relying on correlation alone.
454	Structural equation models can provide important advances in understanding
455	Everglades food webs. However, there are some shortcomings of our study. As is the
456	case for all studies examining open, natural food webs, a limitation of our analysis is that
457	models were necessary simplifications of the true food web. We were unable to include
458	the effects of larger predators, which may have exerted further top-down control on
459	consumers, and detritus-based components of the food web. Effects of predatory fish,
460	such as gar, may actually be included in direct effects of time since flooding, since they
461	are limited to deeper refugia when water levels are low (Chick, Ruetz, & Trexler, 2004).
462	In addition, although we gained some resolution by categorizing consumers into three
463	groups based on size and diet, individual species may exhibit unique and contrasting

Freshwater Biology

2	
3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 55	
55	
56	
57	
58	
59	
60	

464	patterns not fully described by this analysis. For example, Liston (2006) identified
465	effects of hydrology and/or nutrient levels on certain infaunal groups that were
466	sometimes at odds with patterns observed for infauna as a whole. Finally, our study did
467	not incorporate sites with phosphorus levels greatern than 760 $\mu g g^{-1}$ dry periphyton
468	tissue; at higher levels periphyton mats can completely disappear and densities of fish
469	and macroinvertebrates can be reduced (King & Richardson, 2007; Liston et al., 2008;
470	Rejmánková, Macek, & Epps, 2008). Future research should address food-web structure
471	at artificially high nutrient levels, and ideally incorporate larger predatory fishes and
472	wading birds as a fourth trophic level.
473	By using a multi-model, structural equation modeling approach (Grace, 2006),
474	this study provides insight into direct and indirect effects and the apparently limited role
475	of top-down control in shaping consumer densities. To our knowledge, this is the first
476	such analysis of a natural wetlands food web incorporating multiple trophic levels. Our
477	results should guide future research to on the mechanisms underlying our proposed causal
478	pathways.
479	
480	
481	Acknowledgments
482	This work as made possible by Peter Kalla and Daniel Scheidt of the U. S. Environmental
483	Protection Agency (US EPA) and Jennifer Richards of Florida International University
484	(FIU), who managed and coordinated our research program and assured adequate funding
485	and research support for this project. We thank Mike Cuoto, Albert Gonzales, Charles
486	Molnar, Angela Marino, Christine Taylor and Franco Tobias for collecting and

1
2
3
4
5
6
7
8
a
10
11
10
12
13
14
10
10
17
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30
31 20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
59 60
υU

487	processing samples, Charles Goss for providing hydrological data, and Aaron Parker for
488	providing the map. This research was conducted as part of the US EPA's (Region 4,
489	Science and Ecosystem Support Division and Water Management Divison) R-EMAP
490	project (EPA 904-R-07-001), which was jointly funded by the US EPA and the
491	Everglades National Park (ENP) under cooperative agreement number H5297-05-0088
492	between FIU and ENP. This research was enhanced by collaborations with the Florida
493	Coastal Everglades Long-Term Ecological Research program (funded by the National
494	Science Foundation, DBI-0620409 and DEB-9910514). The research was conducted in
495	accord with FIU animal care guidelines. This is contribution #XXX of the Southeast
496	Environmental Research Center.
497	
498	
499	References
500	Batzer D.P. (1998) Trophic interactions among detritus, benthic midges, and predatory
501	fish in a freshwater marsh. Ecology, 79, 1688-1698. doi: 10.1890/0012-
502	9658(1998)079[1688:TIADBM]2.0.CO;2
503	Burnham, K. P., & Anderson, D. R. (2002) Model Selection and Multimodel Inference:
504	A Practical Information-Theoretic Approach, 2 nd Edition. Springer-Verlag, New
505	York.
506	Byrne B.M. (2000) Structural Equation Modeling with AMOS: Basic Concepts,
507	Applications, and Programming. Lawrence Erlbaum Associates, Mahwah, NJ,
508	USA.

Freshwater Biology

2								
3 4	Chase J.M. (2003) Strong and weak trophic cascades along a productivity gradient.							
5 6	 510 <i>Oikos</i>, 101, 187–195. doi: 10.1034/j.1600-0706.2003.12062.x 511 Chick J.H., Geddes P., & Trexler J.C. (2008) Periphyton mat structure mediates 							
7 8 9								
10 11	512	interactions in a subtropical marsh. Wetlands, 28, 378-389. doi: 10.1672/07-121.1						
12 13	513	Chick J.H., Ruetz C.R., III, & Trexler J.C. (2004) Spatial scale and abundance patterns of						
14 15	514	large fish communities in freshwater marshes of the Florida Everglades.						
16 17 18	515	Wetlands, 24,652-664. doi:						
19 20	516	10.1672/02775212(2004)024[0652:SSAAPO]2.0.CO;2						
21 22	517	Claeskens G. & Hjort N.L. (2008) <i>Model Selection and Model Averaging</i> . Cambridge						
23 24 25	518	University Press, New York.						
26 27	519	Corti D., Kohler S.L., & Sparks R.E. (1997) Effects of hydroperiod and predation on a						
28 29	520	Mississippi River floodplain invertebrate community <i>Decologia</i> 109 154–165						
30 31	520	doi: 10.1007/s00//20050070						
32 33	521							
34 35	522	Davis S.M. (1994) Phosphorus inputs and vegetation sensitivity in the Everglades. In:						
36 37	523	Everglades: The Ecosystem and Its Restoration (Eds. S.M. Davis & J.C. Ogden),						
38 39 524 pp. 357-378. St. Lucie Press, Delray Beach, FL, USA.								
40 41 42	 525 Davis S.M. & Ogden J.C. (Eds.) (1994) Everglades: The Ecosystem and Its Resto 							
43 44	526	St. Lucie Press, Delray Beach, FL, USA.						
45 46	 45 46 527 Dorn N.J. (2008) Colonization and reproduction of large macroinvertebrates are 47 48 528 enhanced by drought-related fish reductions. <i>Hydrobiologia</i>, 605, 209–218. 							
47 48 49								
50 51	529	10.1007/s10750-008-9355-7						
52 53								
54								
55 56								
57								
58 59								

1

2						
3 4	3 530 Dorn N.J., Trexler J.C., & Gaiser E.E. (2006) Exploring the role of large pred					
5 6 7	531	marsh food webs: Evidence for a behaviorally-mediated trophic cascade.				
8 9	Hydrobiologia, 569, 375-386. doi: 10.1007/s10750-006-0143-y					
10 11	533	Elmhagen B. & Rushton S.P. (2007) Trophic control of mesopredators in terrestrial				
12 13	534	ecosystems: Top-down or bottom-up? Ecology Letters, 10, 197–206. doi:				
14 15 16	535	10.1111/j.1461-0248.2006.01010.x				
17 18	536	Gaiser E.E., Childers D.L., Jones R.D., Richards J.H., Scinto L.J., & Trexler J.C. (2006)				
19 20	537	Periphyton responses to eutrophication in the Florida Everglades: Cross-system				
21 22 23	538	patterns of structural and compositional change. Limnology and Oceanography,				
24 25	539	51, 617–630. doi: 10.4319/lo.2006.51.1_part_2.0617				
26 27 540 Gaiser E.E., Trexler J.C., Richards J.H., Childers D.L., Lee D., Edwards A.L						
28 29 30	L.J., Jayachandran K., Noe G.B., & Jones R.D. (2005) Cascading ecological					
 31 32 542 effects of low-level phosphorus enrichment in the Florida Everglades. <i>Journ</i> 						
33 34 35	543 Environmental Quality, 34, 717-723. doi:10.2134/jeq2005.0717					
36 37	544	Geddes P. & Trexler J.C. (2003) Uncoupling of omnivore-mediated positive and negative				
38 39	545	effects on periphyton mats. Oecologia, 136, 585–595. doi: 10.1007/s00442-003-				
40 41 42	546	1294-4				
43 44	547	Gotelli N.J. & Ellison A.M. (2006) Food-web models predict species abundances				
45 46	548	in response to habitat change. PLoS Biology, 4, 1869-1873. doi:				
47 48 49	549	10.1371/journal.pbio.0040324				
50 51	550	Gottlieb A.D., Richards J.H., & Gaiser E.E. (2006) Comparative study of periphyton				
52 53	551	community structure in long and short-hydroperiod Everglades marshes.				
54 55 56	552	Hydrobiologia, 569, 195–207. doi: 10.1007/s10750-006-0132-1				
57 58						
59 60						

Freshwater Biology

3 4	553	53 Grace J.B. (2006) <i>Structural Equation Modeling and Natural Systems</i> . Cambridge							
5 6	554	University Press, New York.							
7 8 9	555	555 Gunderson, L. H. (1994) Vegetation of the Everglades: Determinants of community							
10 11	composition. In: Everglades: The System and Its Restoration (Eds. S. M. Davis &								
12 13	J. C. Ogden), pp. 323-340. St. Lucie Press, Boca Raton, FL.								
14 15 16	558	Gunderson L.H. & Loftus W.F. (1993) The Everglades. In: Biodiversity of the							
17 18	559	Southeastern United States: Lowland Terrestrial Communities (Eds. W.H. Martin,							
19 20 21	560	S.G. Boyce, & A.C. Echternacht), pp. 199-225. John Wiley & Sons, Inc., New							
21 22 23	561	York.							
24 25	562	Johnson M.L., Huggins D.G., & DeNoyelles F., Jr. (1991) Ecosystem modeling with							
26 27 28	563	Lisrel: A new approach for measuring direct and indirect effects. Ecological							
29 30	564	Applications, 1, 383-398. doi: 10.2307/1941898							
31 32	565	Jordan C.F., Coyne S., & Trexler J.C. (1997) Sampling fishes in vegetated habitats:							
33 34 35	566	Effects of habitat structure on sampling characteristics of the 1-m ² throw trap.							
36 37	Transactions of the American Fisheries Society, 126, 1012-1020. doi:								
38 39 568 10.1577/1548-8659(1997)126<1012:SFIVHE>2.3.CO;2									
40 41 42	569	King R.S. & Richardson C.J. (2007) Subsidy-stress response of macroinvertebrate							
43 44	570	community biomass to a phosphorus gradient in an oligotrophic wetland							
45 46 47	571	ecosystem. Journal of the North American Benthological Society, 26, 491–508.							
48 49	572 doi: 10.1899/06-002R.1								
50 51	573	Kline R.B. (2005) Principles and Practice of Structural Equation Modeling, 2 nd edn. The							
52 53 54	574	Guilford Press, New York.Kneitel J.M. & Chase J.M. (2004) Disturbance,							
55 56									
57 58									
59									

2 3 4	575	predator, and resource interactions alter container community composition.					
5 6	576	Ecology, 85, 2088–2093. doi: 10.1890/03-3172					
7 8 9	577	Liston S.E. (2006) Interactions between nutrient availability and hydroperiod shape					
10 11	578	macroinvertebrate communities in Florida Everglades marshes. Hydrobiologia,					
12 13	579	569, 343-357. doi: 10.1007/s10750-006-0141-0					
14 15 16	580	Liston S.E., & Trexler J.C. (2005) Spatial and temporal scaling of macroinvertebrate					
17 18	581	communities inhabiting floating periphyton mats in the Florida Everglades.					
19 20	582	Journal of the North American Benthological Society, 24,832-844.					
21 22 23	583	Liston S.E., Newman S., & Trexler J.C. (2008) Macroinvertebrate community response					
24 25	584	to eutrophication in an oligotrophic wetland: An in situ mesocosm experiment.					
26 27 28	585	Wetlands, 28, 686-694. doi: 10.1672/07-224.1					
29 30	586	Loftus, W. F. (1999) Accumulation and fate of mercury in an Everglades food web. Ph.D.					
31 32	587	Dissertation, Florida International University, Miami, 295pp.					
33 34 35	588	Marks J.C., Power M.E., & Parker M.S. (2000) Flood disturbance, algal productivity, and					
36 37	589	interannual variation in food chain length. Oikos, 90, 20–27. doi: 10.1034/j.1600-					
38 39	590	0706.2000.900103.x					
40 41 42	591	McCormick P.V., Rawlik P.S., Lurding K., Smith E.P., & Sklar F.H. (1996) Periphyton-					
43 44	592	water quality relationships along a nutrient gradient in the northern Florida					
45 46 47	593	Everglades. Journal of the North American Benthological Society, 15, 433-449.					
48 49	594	McCormick P.V., Shuford R.B.E., III, & Rawlik P.S. (2004) Changes in					
50 51	595	macroinvertebrate community structure and function along a phosphorus gradient					
52 53 54	596	in the Florida Everglades. Hydrobiologia, 529, 113–132. doi: 10.1007/s10750-					
55 56	597	004-5737-7					
57 58 59							

Freshwater Biology

2 3 4	598	Menge B.A. & Sutherland J.P. (1987) Community regulation: Variation in disturbance,						
5 6 7	599	competition, and predation in relation to environmental stress and recruitment.						
7 8 9	600	The American Naturalist, 130, 730-757. doi: 10.1086/284741						
10 11 12 601 Morin P. J. (1999) <i>Community Ecology</i> . Blackwell Science, Malden, MA								
12 13	602	Pace M.L., Cole J.J., Carpenter S.R., & Kitchell J.F. (1999) Trophic cascades revealed in						
14 15 603 diverse ecosystems. TREE, 14, 483-488. doi:10.1016/S0169-5347(99)0172 16 17 604 Peck G.W. & Walton W.E. (2008) Effect of mosquitofish (Gambusia affinis) and s								
								1920605food abundance on the invertebrate community within a constructed treatmer
22 23	606	wetland. Freshwater Biology, 53, 2220–2233. doi: 10.1111/j.1365-						
24 25	607	2427.2008.02048.x						
26 608 Polis G.A. & Strong D.R. (1996) Food web complexity and community dynamics. 7 28 609 American Naturalist, 147, 813-846. doi: 10.1086/285880								
							31 32	610
33 34 35	611	10.2307/1940153						
36 37	612	Power M.E., Parker M.S., & Wootton J.T. (1996) Disturbance and food chain length in						
38 39	613	rivers. In: Food Webs: Integration of Patterns and Dynamics (Eds. G.A. Polis &						
40 41 42	614	K.O. Winemiller), pp. 286-297. Chapman & Hall, New York.						
43 44	615	Rader R.B. & Richardson C.J. (1994) Response of macroinvertebrates and small fish to						
45 46	616	nutrient enrichment in the northern Everglades. Wetlands, 14, 134-146.						
47 48 49	617	Rejmánková E., Macek P., & Epps K. (2008) Wetland ecosystem changes after three						
50 51 52 53	618	years of phosphorus addition. Wetlands, 28, 914-927. doi: 10.1672/07-150.1						
54 55								
56 57								
58								

2 3 4	619	Riginos C. & Grace J.B. (2008) Savanna tree density, herbivores, and the herbaceous					
5 6	620	community: Bottom-up vs. top-down effects. <i>Ecology</i> , 89, 2228–2238. doi:					
7 8 9	621	10.1890/07-1250.1					
10 11	622	Scheidt D.J., & Kalla P.I. (2007) Everglades ecosystem assessment: water management					
12 13	623	and quality, eutrophication, mercury contamination, soils and habitat: monitoring					
14 15 16	624	for adaptive management: a R-EMAP status report. USEPA Region 4, Athens,					
17 18	625	GA. EPA 904-R-07-001. 98 pp.					
19 20 21	626	Shurin J.B., Borer E.T., Seabloom E.W., Anderson K., Blanchette C.A., Broitman B.,					
21 22 23	627	Cooper S.D., & Halpern B.S. (2002) A cross-ecosystem comparison of the					
24 25	628	strength of trophic cascades. Ecology Letters, 5, 785–791. doi: 10.1046/j.1461-					
26 27 28	629	0248.2002.00381.x					
29 30	630	Stevens D. L., & Olsen A.R. (2003) Variance estimation for spatially balanced samples					
31 32	631	of environmental resources. Environmetrics, 14, 593-610. doi: 10.1002/env.606.					
33 34 35	632	Stevenson R. J., McCormick P.V., & Frydenborg R. (2002) Methods for evaluating					
36 37	633	wetland condition: #11 Using algae to assess environmental conditions in					
38 39 40	634	wetlands. EPA-822-R-02-021. United States Environmental Protection Agency,					
41 42	635	Office of Water. Washington, DC.					
43 44	636	Thomas S., Gaiser E. E., Gantar M., & Scinto L. J. (2006) Quantifying the responses of					
45 46 47	637	calcareous periphyton crusts to rehydration: A microcosm study (Florida					
48 49	638	Everglades). Aquatic Botany, 84, 317-323. doi:10.1016/j.aquabot.2005.12.003					
50 51	639	Trexler, J. C., & Goss C. W. 2009. Aquatic fauna as indicators for Everglades restoration:					
52 53 54	640	Applying dynamic targets in assessments. Ecological Indicators 9S:S108-S119.					
55 56	641	doi:10.1016/j.ecolind.2008.11.001					
57 58 59							

Freshwater Biology

- 3 4	642	Trexler J.C., Loftus W.F., Jordan F., Chick J.H., Kandl K.L., McElroy T.C., & Bass O.L.,			
5 6 7	643	Jr. (2002) Ecological scale and its implications for freshwater fishes in the Florida			
7 8 9	644	Everglades. In: The Everglades, Florida Bay, and Coral Reefs of the Florida			
10 11	645	Keys: An Ecosystem Sourcebook (Eds. J.W. Porter & K.G. Porter), pp. 153-181.			
12 13 14	646	CRC Press, Boca Raton, FL, USA.			
15 16	647	Trexler J.C., Loftus W.F., & Perry S. (2005) Disturbance frequency and community			
17 18	648	structure in a twenty-five year intervention study. <i>Oecologia</i> , 145, 140–152. doi:			
19 20 21	649	10.1007/s00442-005-0094-4			
22 23	650	Turner A.M., Trexler J.C., Jordan C.F., Slack S.J., Geddes P., Chick J.H., & Loftus W.F.			
24 25 26	651	(1999) Targeting ecosystem features for conservation: Standing crops in the			
20 27 28	652	Florida Everglades. Conservation Biology, 13, 898-911. doi: 10.1046/j.1523-			
29 30	653	1739.1999.97513.x			
31 32 33	654	Wellborn G.A., Skelly D.K., & Werner E.E. (1996) Mechanisms creating community			
34 35	655	structure across a freshwater habitat gradient. Annual Review of Ecology and			
36 37	656	Systematics, 27, 337-363. doi: 10.1146/annurev.ecolsys.27.1.337			
38 39 40	657	Williams A.J. & Trexler J.C. (2006) A preliminary analysis of the correlation of food-			
41 42	658	web characteristics with hydrology and nutrient gradients in the southern			
43 44	659	Everglades. Hydrobiologia, 569, 493-504. doi: 10.1007/s10750-006-0151-y			
45 46 47	660	Winemiller K.O. (1996) Factors driving temporal and spatial variation in aquatic			
48 49	661	floodplain food webs. In: Food Webs: Integration of Patterns and Dynamics (Eds.			
50 51	662	G.A. Polis & K.O. Winemiller), pp. 298-312. Chapman & Hall, New York.			
52 53 54					
55					
00					

2								
3 4	663	 Wootton J.T. (1994a) The nature and consequences of indirect effects in ecological communities. <i>Annual Review of Ecology and Systematics</i>, 25, 443-466. doi: 						
5 6 7	664							
7 8 9	665 10.1146/annurev.es.25.110194.002303							
10 11	666	Wootton J.T. (1994b) Predicting direct and indirect effects: An integrated approach using						
12 13	667	experiments and path analysis. Ecology, 75, 151-165. doi: 10.2307/1939391						
14 15 16	668	Wootton J.T., Parker M.S., & Power M.E. (1996) Effects of disturbance on river food						
17 18	669	webs. Science, 273, 1558-1561. doi: 10.1126/science.273.5281.1558						
19 20 21	670	Wootton J.T. & Power M.E. (1993) Productivity, consumers, and the structure of a river						
21 22 23	671	food chain. Proceedings of the National Academy of Sciences of the United States						
24 25	672	of America, 90, 1384-1387.						
26 27 28	673							
29 30	674							
31 32								
33 34 35								
36 37								
38 39								
40 41 42								
42 43 44								
45 46								
47 48								
49 50								
51 52								
53 54								
55 56								
57 58								
59 60								

Table 1 Descriptive statistics for environmental gradients and consumer densities (n = 28)

Variables	Minimum Value	Maximum Value	Mean ± SE
Periphyton TP ($\mu g \cdot g dr y^{-1}$)	53	760	272 ± 39
Time since flooding (days)	160	2164	611 ± 134
Periphyton biomass (AFDM) (g·m ⁻²)	4	540	107 ± 29
Small omnivore density (number·m ⁻²)	1	318	35 ± 11
Small herbivore density (number \cdot m ⁻²)	0.0	9.7	1.5 ± 0.41
Periphyton infauna density (number·m ⁻²)	409	105,123	37,562 ± 5,622

Table 2 Spearman correlations between major environmental gradients (time sinceflooding and periphtyon total phosphorus [TP]) and periphyton characteristics and

consumer densities (n = 28)

	Time since flooding, <i>r_s</i>	Periphtyon TP, r _s
Total periphyton volume (ml)	-0.59	-0.88
Total periphyton aerial cover (%)	-0.67	-0.87
Periphyton biomass (AFDM) (g·m ⁻²)	-0.68	-0.92
Percent organic content (%)	+0.64	+0.82
Percent carbon (%)	+0.66	+0.84
Percent nitrogen (%)	+0.64	+0.86
Chlorophyll <i>a</i> concentration ($\mu g \cdot g dr y^{-1}$)	+0.57	+0.78
Chlorophyll <i>a</i> density ($\mu g \cdot m^{-2}$)	-0.65	-0.88
Relative abundance of non-filamentous bluegreen algae	-0.42	-0.53
Relative abundance of filamentous bluegreen algae	-0.43	-0.80
Relative abundance of green algae	+0.51	+0.61
Relative abundance of diatoms	+0.30	+0.50
Small omnivore density (number \cdot m ⁻²)	+0.31	+0.65
Small herbivore density (number⋅m ⁻²)	+0.20	+0.29
Periphyton infauna density (number·m ⁻²)	-0.02	+0.03

Freshwater Biology

 Table 3 Comparison of structural equation models (see also detailed descriptions in Supporting Information Appendix S2). The BIC

 and Bollen-Stine chi-square p-values of the best models are in *bold*

Model	Infauna - Periphyton	Herbivores - Periphyton	Omnivores - Periphyton	Omnivores - Infauna	Omnivores - Herbivores	k ¹	BIC	Bollen- Stine X ² P- value
1	Bottom-up	Bottom-up	Bottom-up	Bottom-up	Bottom-up	23	95.197	0.15
2	Bottom-up	Bottom-up		Bottom-up	Bottom-up	21	104.248	0.025
3	Bottom-up	Bottom-up		Bottom-up		20	117.951	0.004
4	Bottom-up	Bottom-up	Bottom-up	Bottom-up		22	106.133	0.027
5	Bottom-up & Top-down	Bottom-up & Top-down		Bottom-up & Top-down		23	108.390	0.004
6	Bottom-up & Top-down	Bottom-up & Top-down		Bottom-up & Top-down	Bottom-up	24	92.234	0.12
7	Bottom-up & Top-down	Bottom-up & Top-down	Bottom-up & Top-down	Bottom-up & Top-down	Bottom-up	27	95.781	0.033

¹number of parameters

Table 4 Indirect, direct and total effects of phosphorus enrichment (periphyton TP) and

 time since flooding for Models 6 and 1

	Log Periphyton TP		Log Time Since Flooding			
	Direct	Indirect	Total	Direct	Indirect	Total
Model 6						
Log Periphyton	-1.95	+0.21	-1.74	+0.04	-0.06	-0.02
Biomass	(-1.02)	(+0.11)	(-0.91)	(+0.02)	(-0.04)	(-0.01)
Log Relative						
Abundance of	+0.66	0	+0.66	-0.20	0	-0.20
Diatoms +	(+0.90)	Ŭ	(+0.90)	(-0.32)	Ũ	(-0.32)
Green Algae		.0.05	.0.05	.0.10	0.20	0.12
Log Infauna	0	+0.05	+0.05	+0.18	-0.30	-0.12
Density Log Horbiyono		(+0.03)	(+0.05)	+(0.12)	(-0.21)	(-0.09)
Log Heroivore	0	+0.48	+0.48	-0.57	+0.20	-0.17
Log Omnivore		(± 0.37)	(± 0.37)	(-0.31)	(± 0.27)	(-0.24)
Density	0	+0.83 (+0.68)	+0.83	+0.17	(-0.37)	(-0.21)
		(10.00)	(10.00)	(10.10)	(0.50)	(0.20)
Model 1						
Log Periphyton	-1.77	0	-1.77	-0.003	0	-0.003
Biomass	(-0.92)	0	(-0.92)	(-0.002)	0	(-0.002)
Log Relative						
Abundance of	+0.66	0	+0.66	-0.20	0	-0.20
Diatoms +	(+0.90)	0	(+0.90)	(-0.32)	0	(-0.32)
Green Algae		0.07	0.07			0.4.0
Log Infauna	0	+0.06	+0.06	+0.20	-0.33	-0.13
Density		(+0.03)	(+0.03)	(+0.14)	(-0.23)	(-0.09)
Log Herbivore	0	+0.29	+0.29	-0.12	+0.05	-0.08
Density		(+0.36)	(+0.36)	(-0.18)	(+0.07)	(-0.11)
Log Omnivore	0	+0.88	+0.88	+0.01	-0.23	-0.24
		(+0./1)	(+0./1)	+(0.01)	(-0.22)	(-0.22)

Standardized coefficients are shown in parentheses.

Figure Legends

Fig. 1 Map of the study area with the location of sampling sites in the Florida Everglades

Fig. 2 Relationships between consumer densities and time since flooding

Fig. 3 Relationships between consumer densities and periphyton total phosphorus (TP) levels

Fig. 4 Model with the lowest BIC value (Model 6), incorporating bottom-up and topdown effects and no omnivory. All variables were log-transformed. Unstandardized and standardized (in parentheses) path coefficients are shown, along with squared multiple correlation coefficients (R^2) at the upper right corner of each endogenous variable. The bidirectional arrow between periphyton total phosphorus and time since flooding represents their non-causal bivariate covariance (correlation if standardized)

Fig. 5 Model with the second lowest BIC value (Model 1), incorporating bottom-up effects only and omnivory. All variables were log-transformed. Unstandardized and standardized (in parentheses) path coefficients are shown, along with squared multiple correlation coefficients (R^2) at the upper right corner of each endogenous variable. The bidirectional arrow between periphyton total phosphorus and time since flooding represents their non-causal bivariate covariance (correlation if standardized)

Fig. 5

Supporting Information, Appendix S1

Table S1 Density and frequency of occurrence of taxonomic groups contributing to

 trophic categories. We define omnivores as species feeding at more than one trophic level

 and include several taxa that are carnivores acting as intraguild predators, as well as

 potentially feeding on herbivores.

Taxonomic group	Common name	Mean density (# m ⁻²) (SE)	Number of sites
Throw-trap omnivores		(
Palaemonetes paludosus	Grass shrimp	13 (5.4)	20
Heterandria formosa	Least killifish	7 (2.5)	21
Gambusia holbrooki 📃 🗸	Mosquitofish	5 (1.5)	23
Lucania goodei	Bluefin killifish	2.4 (0.70)	20
Procambarus fallax	Slough crayfish	1.7 (0.89)	14
Celithemis eponina (larva)	Halloween pennant dragonfly	1.0 (0.25)	18
Procambarus alleni	Everglades crayfish	1.0 (0.39)	9
Fundulus chrysotus	Golden topminnow	0.8 (0.15)	24
Coenagrionidae (larva)	Damselfly	0.6 (0.26)	16
Pelocoris femoratus	Alligator flea	0.5 (0.18)	14
Elassoma evergladei	Everglades pygmy sunfish	0.4 (0.14)	9
Lepomis marginatus	Dollar sunfish	0.4 (0.11)	13
Libellula needhami (larva)	Needham's skimmer dragonfly	0.3 (0.10)	13
Procambarus spp.	Unknown procambarid crayfish	0.3 (0.14)	9
Fundulus confluentus	Marsh killifish	0.16 (0.063)	7
<i>Erythemis simplicicollis</i> (larva)	Eastern pondhawk dragonfly	0.1 (0.11)	2
<i>Belostoma</i> spp.	Giant water bug	0.10 (0.041)	6
<i>Brachymesia gravida</i> (larva)	Four-spotted pennant dragonfly	0.10 (0.084)	2
Enneacanthus gloriosus	Bluespotted sunfish	0.08 (0.053)	3
Coryphaeschna ingens (larva)	Regal darner dragonfly	0.04 (0.020)	3
Cyprinodon variegatus	Sheepshead minnow	0.02 (0.024)	1
Lepomis punctatus	Spotted sunfish	0.02 (0.017)	2
Notophthalmus viridescens	Peninsula newt	0.02 (0.024)	1

Taxonomic group	Common name	Mean density (# m ⁻²) (SE)	Number of sites	
Noturus gyrinus	Tadpole madtom	0.01 (0.012)	1	
<i>Cybister</i> spp. (larva)	Water beetle	0.01 (0.012)	1	
Pseudobranchus axanthus	Dwarf siren	0.01 (0.012)	1	
Throw-trap herbviores				
Planorbella spp.	Planorbid snail	0.6 (0.36)	7	
Jordanella floridae	Flagfish	0.4 (0.12)	17	
Poecilia latipinna	Sailfin molly	0.18 (0.079)	5	
Rana spp. (tadpole)	Ranid frog	0.12 (0.075)	3	
Coleoptera (adult)	Aquatic beetle	0.07 (0.040)	4	
Ephemeroptera (larvae)	Mayfly	0.06 (0.030)	4	
Haitia spp.	Unidentified physid	0.06 (0.049)	2	
Pomacea paludosa	Apple snail	0.01 (0.012)	1	
Perinhyton infauna				
Cladocera	Cladoceran: water	9000 (1700)	27	
	flea	9000 (1700)	27	
Nematoda	Nematode:	6000 (1100)	27	
l'telliutodu	roundworms	0000 (1100)	21	
Chironomidae (larva)	Chironomid: non-	5100 (960)	28	
(excluding Tanypodinae)	biting midge	5100 (500)	20	
Harpacticoida	Harpacticoid copepod	5000 (2200)	21	
Acari	Water mite	5000 (1800)	28	
Ostracoda	Ostracod	4000 (900)	28	
Amphipoda	Amphipod	900 (220)	26	
Tanypodinae (larva)	Chironomid: non-	800 (150)	20	
Tanypounde (Iai (u)	biting midge	000 (100)	2,	
Dasyhelea spp (larya)	Biting midge	600(140)	27	
<i>Bezzia</i> spp. (larva)	Biting midge	500 (140)	20	
Cyclopoida	Cyclopoid copepod	220 (62)	23	
Haitia spp.	Unidentified physid	120(29)	17	
iiuma spp.	snail	120 (2))	17	
Calanoida	Calanoid copepod	120 (55)	17	
Copepoda	Unidentified copepod	100 (28)	16	
Dryopidae (larva)	Long-toed water	90 (44)	5	
	beetle	20(11)	C	
Ephemeroptera (larva)	Mayfly	70 (24)	14	
Diptera (pupa)	Unidentified fly pupa	60 (14)	20	
Heteroptera	Aquatic bug	40 (12)	13	
Diptera (larva)	Unidentified fly	43 (9.9)	16	
Trichoptera (larva)	Caddis fly	40 (18)	13	
Ceratopogonidae (larva)	Biting midge	40 (21)	9	
Tipulidae (larva)	Crane fly	21 (10)	6	

1
2
3
4
4
5
6
7
0
0
9
10
11
10
12
13
14
15
16
10
17
18
19
20
24
21
22
23
24
25
25
26
27
28
20
29
30
31
32
33
33
34
35
36
37
20
30
39
40
41
12
40
43
44
45
46
47
4/
48
49
50
51
51
52
53
54
55
55
56
57
58

Taxonomic group	Common name	Mean density (# m ⁻²) (SE)	Number of sites
Stratiomyidae (larva)	Soldier fly	19 (9.4)	7
Pelocoris femoratus	Alligator flea	18 (6.9)	9
Collembola	Springtail	16 (7.4)	7
Coenagrionidae (larva)	Damselfly	15 (5.5)	11
Planorbella spp.	Planorbid snail	15 (8.6)	8
Coleoptera (adult)	Aquatic beetle	13 (6.1)	6
Berosus spp. (larva)	Aquatic beetle	13 (9.0)	3
Gastropoda	Unidentified snail	5 (4.4)	2
Enochrus spp. (larva)	Aquatic beetle	4 (2.7)	3
Dolichopodidae (larva)	Long-legged fly	3 (3.4)	1
Coleoptera (larva)	Aquatic beetle	3 (2.0)	3
Littoridinops monroensis	Cockscomb hydrobe	3 (2.1)	2
Anisoptera (larva)	Unidentified	2(1.9)	2
	dragonfly		
Erythemis simplicicollis	Eastern pondhawk	0.7 (0.69)	1
(larva)	dragonfly	~ /	
Palaemonetes paludosus	Grass shrimp	0.4 (0.40)	1
Brachvmesia gravida	Four-spotted pennant	0.1 (0.12)	1
(larva)	dragonfly	()	_

1	Supporting Information, Appendix S2
2	
3	Candidate Models
4	Model Development
5	We developed seven a priori structural equation models based on previous studies
6	and theoretical expectations. All models contained: 1) variables representing time since
7	flooding, periphyton total phosphorus, periphyton biomass (ash-free dry mass), the
8	combined relative abundance of diatoms and green algae, infauna density (from
9	periphyton core samples), herbivore density (from throw-trap samples), and omnivore
10	density (from throw-trap samples); 2) a covariance between time since flooding and
11	periphyton phosphorus; 3) direct effects of time since flooding on all variables except
12	periphyton phosphorus; and 4) direct effects of periphyton phosphorus on periphyton
13	biomass and the combined relative abundance of diatoms and green algae. Direct effects
14	of phosphorus enrichment on periphyton biomass and algal community structure have
15	been demonstrated previously (e.g., McCormick et al., 1996; Gaiser et al., 2005, 2006).
16	Hydrological impacts on consumer densities, periphyton biomass, and algal community
17	structure have been suggested by several studies (e.g., Trexler, Loftus, & Perry, 2005;
18	Gottlieb, Richards, & Gaiser, 2006; Liston, 2006). Thus, these elements were included in
19	all structural equation models. Models varied in their effects of variables representing
20	infaunal density, herbivore density, and omnivore density, based on models of food webs
21	and trophic interactions (e.g., Power, 1992). Models 1-4 included bottom-up effects (e.g.,
22	effect of infauna density on omnivore density) only, and differed in their inclusion of
23	omnivory (direct effect of periphyton biomass on omnivore density) and effects of

herbivores on omnivores. Models 5-7 included both bottom up effects and reciprocal
top-down effects (e.g., effect of omnivore density on infauna density), and also differed
in their inclusion of omnivory and relationships between herbivores and omnivores. We
were unable to test models containing reciprocal relationships between omnivore density
and herbivore density due to empirical underidentification.

30 Model 1: Bottom-up control, omnivory present

40 Model 3: Bottom-up control, omnivory absent, no path between herbivores and

omnivores

Model 4: Bottom-up control, omnivory present, no path between herbivores and

Model 5: Bottom-up and top-down control, omnivory absent, no path between herbivores

and omnivores

49 Model 6: Bottom-up and top-down control, omnivory absent, only bottom-up control

50 between herbivores and omnivores

52 Model 7: Bottom-up and top-down control, omnivory present, only bottom-up control

53 between herbivores and omnivores

Freshwater Biology

56	References
57	Gaiser E.E., Childers D.L., Jones R.D., Richards J.H., Scinto L.J., & Trexler J.C. (2006)
58	Periphyton responses to eutrophication in the Florida Everglades: Cross-system
59	patterns of structural and compositional change. Limnology and Oceanography
60	51, 617-630. doi: 10.4319/lo.2006.51.1_part_2.0617
51	Gaiser E.E., Trexler J.C., Richards J.H., Childers D.L., Lee D., Edwards A.L., Scinto
2	L.J., Jayachandran K., Noe G.B., & Jones R.D. (2005) Cascading ecological
53	effects of low-level phosphorus enrichment in the Florida Everglades. Journal
64	Environmental Quality, 34, 717-723. doi:10.2134/jeq2005.0717
5	Gottlieb A.D., Richards J.H., & Gaiser E.E. (2006) Comparative study of periphyton
66	community structure in long and short-hydroperiod Everglades marshes.
67	<i>Hydrobiologia</i> , 569, 195–207. doi: 10.1007/s10750-006-0132-1
58	Liston S.E. (2006) Interactions between nutrient availability and hydroperiod shape
<u>5</u> 9	macroinvertebrate communities in Florida Everglades marshes. Hydrobiologia,
70	569, 343–357. doi: 10.1007/s10750-006-0141-0
71	McCormick P.V., Rawlik P.S., Lurding K., Smith E.P., & Sklar F.H. (1996) Periphyto
72	water quality relationships along a nutrient gradient in the northern Florida
73	Everglades. Journal of the North American Benthological Society, 15, 433-449
74	Power M.E. (1992) Do plants have primacy? Ecology, 73, 733-746. doi:
15	10 2307/1940153

3 4	76	Trexler J.C., Loftus W.F., & Perry S. (2005) Disturbance frequency and community
5 6 7	77	structure in a twenty-five year intervention study. Oecologia, 145, 140-152. doi:
$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 12\\ 23\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 21\\ 22\\ 33\\ 34\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 55\\ 56\\ 57\\ 58\\ 9\\ 20\\ 51\\ 55\\ 56\\ 57\\ 58\\ 9\\ 50\\ 56\\ 57\\ 58\\ 56\\ 57\\ 58\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 56\\ 57\\ 58\\ 56\\ 56\\ 56\\ 56\\ 56\\ 57\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56$	77 78	structure in a twenty-five year intervention study. <i>Decologia</i> , 145, 140–152. doi: 10.1007/s00442-005-0094-4
		Freshwater Biology