413 research outputs found

    Electrocatalytic hydrogen evolution by an iron complex containing a nitro-functionalized polypyridyl ligand

    Get PDF
    Iron polypyridyl complexes have recently been reported to electrocatalytically reduce protons to hydrogen gas at -1.57 V versus Fc(+)/Fc. A new iron catalyst with a nitro-functionalized polypyridyl ligand has been synthesized and found to be active for proton reduction. Interestingly, catalysis occurs at -1.18 V versus Fc(+)/Fc for the nitro-functionalized complex, resulting in an overpotential of 300 mV. Additionally, the complex is active with a turnover frequency of 550 s(-1). Catalysis is also observed in the presence of water with a 12% enhancement in activity. (C) 2015 Elsevier Ltd. All rights reserved

    The effect of the stromal component of breast tumours on prediction of clinical outcome using gene expression microarray analysis

    Get PDF
    INTRODUCTION: The aim of this study was to examine the effect of the cellular composition of biopsies on the error rates of multigene predictors of response of breast tumours to neoadjuvant adriamycin and cyclophosphamide (AC) chemotherapy. MATERIALS AND METHODS: Core biopsies were taken from primary breast tumours of 43 patients prior to AC, and subsequent clinical response was recorded. Post-chemotherapy (day 21) samples were available for 16 of these samples. Frozen sections of each core were used to estimate the proportion of invasive cancer and other tissue components at three levels. Transcriptional profiling was performed using a cDNA array containing 4,600 elements. RESULTS: Twenty-three (53%) patients demonstrated a 'good' and 20 (47%) a 'poor' clinical response. The percentage invasive tumour in core biopsies collected from these patients varied markedly. Despite this, agglomerative clustering of sample expression profiles showed that almost all biopsies from the same tumour aggregated as nearest neighbours. SAM (significance analysis of microarrays) regression analysis identified 144 genes which distinguished high- and low-percentage invasive tumour biopsies at a false discovery rate of not more than 5%. The misclassification error of prediction of clinical response using microarray data from pre-treatment biopsies (on leave-one-out cross-validation) was 28%. When prediction was performed on subsets of samples which were more homogeneous in their proportions of malignant and stromal cells, the misclassification error was considerably lower (8%–13%, p < 0.05 on permutation). CONCLUSION: The non-tumour content of breast cancer samples has a significant effect on gene expression profiles. Consideration of this factor improves accuracy of response prediction by expression array profiling. Future gene expression array prediction studies should be planned taking this into account

    Androgen Receptor Function Links Human Sexual Dimorphism to DNA Methylation

    Get PDF
    Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS) due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aber

    Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    Get PDF
    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.Comment: 15 pages, 8 figures, submitte

    MrkH, a Novel c-di-GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression

    Get PDF
    Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

    Get PDF
    We report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British-German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO-KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network
    • …
    corecore