4 research outputs found

    The endpoints project: Novel testing strategies for endocrine disruptors linked to developmental neurotoxicity

    Get PDF
    Copyright © 2020 by the authors. Ubiquitous exposure to endocrine-disrupting chemicals (EDCs) has caused serious concerns about the ability of these chemicals to affect neurodevelopment, among others. Since endocrine disruption (ED)-induced developmental neurotoxicity (DNT) is hardly covered by the chemical testing tools that are currently in regulatory use, the Horizon 2020 research and innovation action ENDpoiNTs has been launched to fill the scientific and methodological gaps related to the assessment of this type of chemical toxicity. The ENDpoiNTs project will generate new knowledge about ED-induced DNT and aims to develop and improve in vitro, in vivo, and in silico models pertaining to ED-linked DNT outcomes for chemical testing. This will be achieved by establishing correlative and causal links between known and novel neurodevelopmental endpoints and endocrine pathways through integration of molecular, cellular, and organismal data from in vitro and in vivo models. Based on this knowledge, the project aims to provide adverse outcome pathways (AOPs) for ED-induced DNT and to develop and integrate new testing tools with high relevance for human health into European and international regulatory frameworks.European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement number: 825759 (The ENDpoiNTs project)

    Improvement of several stress response and sleep quality hormones in men and women after sleeping in a bed that protects against electromagnetic fields

    No full text
    Abstract Background The electromagnetic fields (EMFs) emitted by the technologies affect the homeostatic systems (nervous, endocrine, and immune systems) and consequently the health. In a previous work, we observed that men and women, after 2 months of using a bed with a registered HOGO system, that prevents and drain EMFs, improved their immunity, redox and inflammatory states and rejuvenated their rate of aging or biological age. Since, EMFs can act as a chronic stressor stimulus, and affect the sleep quality. The objective of this work was to study in men and women (23–73 years old) the effect of sleeping for 2 months on that bed in the blood concentrations of several hormones related to stress response and sleep quality as well as to corroborate the rejuvenation of their biological age. Methods In 18 men and women, plasma concentration of cortisol, dehydroepiandrosterone (DHEA), catecholamines (epinephrine, norepinephrine and dopamine), serotonin, oxytocin and melatonin were analyzed before and after 2 months of using the HOGO beds. A group of 10 people was used as placebo control. In another cohort of 25 men (20 experimental and 5 placebo), the effects of rest on the HOGO system on the concentration of cortisol and testosterone in plasma were studied. In all these volunteers, the biological age was analyzed using the Immunity Clock model. Results There is a significant increase in plasma concentration of DHEA, norepinephrine, serotonin, oxytocin, and melatonin as well as in testosterone, after resting for 2 months in that bed with the EMFs avoiding system. In addition, decreases in Cortisol/DHEA and Testosterone/cortisol ratio and plasma dopamine concentration were observed. No differences were found in placebo groups. In all participants that slept on HOGO beds, the biological age was reduced. Conclusions Sleeping in a bed that isolates from EMFs and drain them can be a possible strategy to improve the secretion of hormones related to a better response to stress and sleep quality, which means a better endocrine system, and consequently better homeostasis and maintenance of health. This fact was confirmed with the slowdown in the rate of aging checked with a rejuvenation of the biological age
    corecore