64 research outputs found

    Multiwavelength properties of a new Geminga-like pulsar: PSR J2021+4026

    Full text link
    In this paper, we report a detailed investigation of the multiwavelength properties of a newly detected gamma-ray pulsar, PSR J2021+4026, in both observational and theoretical aspects. We firstly identify an X-ray source in the XMM-Newton serendipitous source catalogue, 2XMM J202131.0+402645, located within the 95% confidence circle of PSR J2021+4026. With an archival Chandra observation, this identification provides an X-ray position with arcsecond accuracy which is helpful in facilitating further investigations. Searching for the pulsed radio emission at the position of 2XMM J202131.0+402645 with a 25-m telescope at Urumqi Astronomical Observatory resulted in null detection and places an upper-limit of 0.1~mJy for any pulsed signal at 18~cm. Together with the emission properties in X-ray and gamma-ray, the radio quietness suggests PSR J2021+4026 to be another member of Geminga-like pulsars. In the radio sky survey data, extended emission features have been identified in the gamma-ray error circle of PSR J2021+4026. We have also re-analyzed the gamma-ray data collected by FERMI's Large Area Telescope. We found that the X-ray position of 2XMM J202131.0+402645 is consistent with that of the optimal gamma-ray timing solution. We have further modeled the results in the context of outer gap model which provides us with constraints for the pulsar emission geometry such as magnetic inclination angle and the viewing angle. We have also discussed the possibility of whether PSR J2021+4026 has any physical association with the supernova remnant G78.2+2.1 (gamma-Cygni).Comment: 11 pages, 14 figure

    XMM-Newton observation of PSRB2224+65 and its jet

    Get PDF
    We have investigated the pulsar PSRB2224+65 and its X-ray jet with XMM-Newton. Apart from the long X-ray jet which is almost perpendicular to the direction of proper motion, a putative extended feature at the pulsar position, which is oriented in the opposite direction to the proper motion, is also suggested by this deep X-ray imaging. Non-detection of any coherent X-ray pulsation disfavors the magnetospheric origin of the X-rays observed from the position of PSRB2224+65 and hence suggests that the interpretation of pulsar wind nebula is more viable. We have also probed the origin of PSRB2224+65 and identified a runaway star, which possibly originated from the Cygnus OB9 association, as a candidate for the former binary companion of the neutron star's progenitor. © 2012. The American Astronomical Society. All rights reserved.postprin

    WASP-14 b: Transit Timing analysis of 19 light curves

    Full text link
    Although WASP-14 b is one of the most massive and densest exoplanets on a tight and eccentric orbit, it has never been a target of photometric follow-up monitoring or dedicated observing campaigns. We report on new photometric transit observations of WASP-14 b obtained within the framework of "Transit Timing Variations @ Young Exoplanet Transit Initiative" (TTV@YETI). We collected 19 light-curves of 13 individual transit events using six telescopes located in five observatories distributed in Europe and Asia. From light curve modelling, we determined the planetary, stellar, and geometrical properties of the system and found them in agreement with the values from the discovery paper. A test of the robustness of the transit times revealed that in case of a non-reproducible transit shape the uncertainties may be underestimated even with a wavelet-based error estimation methods. For the timing analysis we included two publicly available transit times from 2007 and 2009. The long observation period of seven years (2007-2013) allowed us to refine the transit ephemeris. We derived an orbital period 1.2 s longer and 10 times more precise than the one given in the discovery paper. We found no significant periodic signal in the timing-residuals and, hence, no evidence for TTV in the system.Comment: 12 pages, 10 figures, 7 table

    Discovery of X-ray Pulsation from the Geminga-like Pulsar PSR J 2021+4026

    Get PDF
    published_or_final_versio

    Identification campaign of supernova remnant candidates in the Milky Way - I: Chandra observation of G308.3-1.4

    Full text link
    ROSAT all-sky survey (RASS) data have provided another window to search for supernova remnants (SNRs). In reexamining this data archive, a list of unidentified extended X-ray objects have been suggested as promising SNR candidate. However, most of these targets have not yet been fully explored by the state-of-art X-ray observatories. For selecting a pilot target for a long-term identification campaign, we have observed the brightest candidate, G308.3-1.4, with Chandra X-ray observatory. An incomplete shell-like X-ray structure which well-correlated with the radio shell emission at 843 MHz has been revealed. The X-ray spectrum suggests the presence of a shock-heated plasma. All these evidences confirm G308.3-1.4 as a SNR. The brightest X-ray point source detected in this field-of-view is also the one locates closest to the geometrical center of G308.3-1.4, which has a soft spectrum. The intriguing temporal variability and the identification of optical/infrared counterpart rule out the possibility of an isolated neutron star. On the other hand, the spectral energy distribution from Ks band to R band suggests a late-type star. Together with a putative periodicity of \sim1.4 hrs, the interesting excesses in V, B bands and H-alpha suggest this source as a promising candidate of a compact binary survived in a supernova explosion (SN).Comment: 19 pages, 10 figures, 2 tables, accepted for publication in Ap

    Towards the Rosetta Stone of planet formation

    Full text link
    Transiting exoplanets (TEPs) observed just about 10 Myrs after formation of their host systems may serve as the Rosetta Stone for planet formation theories. They would give strong constraints on several aspects of planet formation, e.g. time-scales (planet formation would then be possible within 10 Myrs), the radius of the planet could indicate whether planets form by gravitational collapse (being larger when young) or accretion growth (being smaller when young). We present a survey, the main goal of which is to find and then characterise TEPs in very young open clusters.Comment: Poster contribution to Detection and Dynamics of Transiting Exoplanets (Haute Provence Observatory Colloquium, 23-27 August 2010

    Is there a compact companion orbiting the late O-type binary star HD 164816?

    Full text link
    We present a multi-wavelength (X-ray, γ\gamma-ray, optical and radio) study of HD 194816, a late O-type X-ray detected spectroscopic binary. X-ray spectra are analyzed and the X-ray photon arrival times are checked for pulsation. In addition, newly obtained optical spectroscopic monitoring data on HD 164816 are presented. They are complemented by available radio data from several large scale surveys as well as the \emph{FERMI} γ\gamma-ray data from its \emph{Large Area Telescope}. We report the detection of a low energy excess in the X-ray spectrum that can be described by a simple absorbed blackbody model with a temperature of ∼\sim 50 eV as well as a 9.78 s pulsation of the X-ray source. The soft X-ray excess, the X-ray pulsation, and the kinematical age would all be consistent with a compact object like a neutron star as companion to HD 164816. The size of the soft X-ray excess emitting area is consistent with a circular region with a radius of about 7 km, typical for neutron stars, while the emission measure of the remaining harder emission is typical for late O-type single or binary stars. If HD 164816 includes a neutron star born in a supernova, this supernova should have been very recent and should have given the system a kick, which is consistent with the observation that the star HD 164816 has a significantly different radial velocity than the cluster mean. In addition we confirm the binarity of HD 164816 itself by obtaining an orbital period of 3.82 d, projected masses m1sin3im_1 {\rm sin}^{3} i = 2.355(69) M⊙_\odot, m2sin3im_2 {\rm sin}^{3} i = 2.103(62) M⊙_\odot apparently seen at low inclination angle, determined from high-resolution optical spectra.Comment: Accepted for publication by MNRAS, 11 pages, 6 figures, 4 table
    • …
    corecore