41 research outputs found

    Urban growth, wastewater production and use in irrigated agriculture: a comparative study of Accra, Addis Ababa and Hyderabad

    Get PDF
    The relationships between urban development, water resources management and wastewater use for irrigation have been studied in the cities of Accra in Ghana, Addis Ababa in Ethiopia and Hyderabad in India. Large volumes of water are extracted from water sources often increasingly far away from the city, while investments in wastewater management are often lagging behind. The resulting environmental degradation within and downstream of cities has multiple consequences for public health, in particular through the use of untreated wastewater in irrigated agriculture. Despite significant efforts to increase wastewater treatment, options for safeguarding public health via conventional wastewater treatment alone remain limited to smaller inner-urban watersheds. The new WHO guidelines for wastewater irrigation recognize this situation and emphasize the potential of post- or non-treatment options. Controlling potential health risks will allow urban water managers in all three cities to build on the benefits from the already existing (but largely informal) wastewater reuse, those being the contribution to food security and reduction of fresh water demands

    Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    Get PDF
    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy=82%, kappa=0.78) and consistency over three imaging dates (overall2010=82%, overall2011=82%, overall2012=88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (â¤28m from shore) for all three dates (2010=79%, 2011=61%, 2012=63%), followed by Juncus roemerianus (2010=11%, 2011=19%, 2012=17%) and Distichlis spicata (2010=4%, 2011=10%, 2012=7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non-oiled shorelines. Only S. alterniflora dominated marshes were extensively degraded, losing 15% (354,604m2) cover in oiled shoreline zones, suggesting that S. alterniflora marshes may be more vulnerable to shoreline erosion following hydrocarbon stress, due to their landscape position

    ET Krishna Basin

    No full text
    Print out of powerpoint presentation made at the Observing river basins from space: why is it important for IWMI - A Remote Sensing and GIS (RS/GIS) Workshop held at the International Water Management Institute, Colombo, Sri Lanka, 28 June 2004. RS/GIS training material

    Mapping agricultural responses to water supply shocks in large irrigation systems, southern India

    No full text
    Irrigated agriculture experienced a water supply shock during a drought in southern India in 2002-2003. In this paper, hotspots of agricultural change were mapped and put in the context of hydrology and water management. Time series of MODIS imagery taken every eight days before (2001-2002) and during (2002-2003) the supply shock were combined with agricultural census data to document changes in cropping patterns in four large irrigation projects in the downstream sections of the Krishna and Godavari River basins (total command area 18,287km2). The area cropped in rice in the four irrigated command areas decreased by 32% during the drought year, and rice production in the two districts that experienced the largest flow reductions fell below production levels of 1980. The irrigation project that showed the largest change in double cropped area (-90%) was upstream of the Krishna Delta. In the Krishna Delta, large areas changed from rice-rice to rice-gram double cropping. Historical water management contributed to the vulnerability of rice production to drought: the main reservoir in the system was drained to dead storage levels by the end of each growing season over 1968-2000, with little carryover storage. The land cover change maps suggested that the lower Krishna Basin has experienced a "hard landing? during basin closure, and revised management strategies that account for the new flow regime will be required to maintain agricultural production during droughts

    Urban and industrial water use in the Krishna Basin, India

    No full text
    Regional urbanization and industrial development require water that may put additional pressure on available water resources and threaten water quality in developing countries. In this study we use a combination of census statistics, case studies, and a simple model of demand growth to assess current and future urban and industrial water demand in the Krishna Basin in southern India.Water use in this ''closed'' basin is dominated by irrigation (61.9 billion cubic metres (BCM) yr1) compared to a modest domestic and industrialwater use (1.6 and 3.2BCMyr1). Totalwater diversion for non-irrigation purposes is estimated at 7-8% of available surface water in the basin in an average year. Thermal power plants use the majority of water used by industries (86% or 2.7 BCM yr1), though only 6.8% of this is consumed via evaporation. Simple modelling of urban and industrial growth suggests that non-agricultural water demand will range from 10 to 20 BCM by 2030. This is 14-28% of basin water available surface water for an average year and 17-34% for a year with 75% dependable flow. Although water use in the Krishna Basin will continue to be dominated by agriculture, water stress, and the fraction of water supplies at risk of becoming polluted by urban and industrial activity, will become more severe in urbanized regions in dry years

    Separating Wet and Dry Years to Improve Calibration of SWAT in Barrett Watershed, Southern California

    No full text
    Hydrological models often perform poorly in simulating dry years in regions with large inter-annual variability in rainfall. We calibrated the Soil and Water Assessment Tool (SWAT) model to dry and wet years separately, using the semi-arid Barrett watershed on the west coast of USA as an example. We used hydrological and meteorological data from 1980–2010 to calibrate the SWAT model parameters, compared the monthly runoff results simulated by SWAT using a traditional calibration for the entire runoff series with results using a calibration with the wet and dry year series, and analyzed differences in the most sensitive parameters between the wet and dry year series. The results showed that (1) the SWAT model calibrated to the entire runoff series produced significant differences in simulation efficiency between the wet years and dry years, with lower efficiency during the dry years; (2) the calibration with separate wet and dry years greatly enhanced the SWAT model’s simulation efficiency for both wet and dry years; (3) differences in hydrological conditions between wet and dry years were represented by changes in the values of the six most sensitive parameters, including baseflow recession rates, channel infiltration rates, Soil Conservation Service (SCS) curve number, soil evaporation, shallow aquifer flow, and soil water holding capacity. Future work can attempt to determine the physical processes that underlie these parameter changes and their impact on the hydrological response of the semi-arid watersheds

    Erratum to the article

    No full text

    Mapping agricultural responses to water supply shocks in large irrigation systems, southern India

    No full text
    Irrigated agriculture experienced a water supply shock during a drought in southern India in 2002-2003. In this paper, hotspots of agricultural change were mapped and put in the context of hydrology and water management. Time series of MODIS imagery taken every eight days before (2001-2002) and during (2002-2003) the supply shock were combined with agricultural census data to document changes in cropping patterns in four large irrigation projects in the downstream sections of the Krishna and Godavari River basins (total command area 18,287km2). The area cropped in rice in the four irrigated command areas decreased by 32% during the drought year, and rice production in the two districts that experienced the largest flow reductions fell below production levels of 1980. The irrigation project that showed the largest change in double cropped area (-90%) was upstream of the Krishna Delta. In the Krishna Delta, large areas changed from rice-rice to rice-gram double cropping. Historical water management contributed to the vulnerability of rice production to drought: the main reservoir in the system was drained to dead storage levels by the end of each growing season over 1968-2000, with little carryover storage. The land cover change maps suggested that the lower Krishna Basin has experienced a "hard landing" during basin closure, and revised management strategies that account for the new flow regime will be required to maintain agricultural production during droughts.MODIS Remote sensing Sensitivity Land cover change Water supply

    Trends in solar radiation due to clouds and aerosols, Southern India, 1952-1997

    No full text
    Decadal trends in cloudiness are shown to affect incoming solar radiation (SW SFC) in the Krishna River basin (13-20 N, 72-82 E), southern India, from 1952 to 1997. Annual average cloudiness at 14 meteorological stations across the basin decreased by 0.09% of the sky per year over 1952-1997. The decreased cloudiness partly balanced the effects of aerosols on incoming solar radiation (SW SFC), resulting in a small net increase in SW SFC in monsoon months (0.1-2.9 W m-2 per decade). During the non-monsoon, aerosol forcing dominated over trends in cloud forcing, resulting in a net decrease in SW SFC (-2.8 to -5.5 W m-2 per decade). Monthly satellite easurements from the International Satellite Cloud Climatology Project (ISCCP) covering 1983-1995 were used to screen the visual cloudiness measurements at 26 meteorological stations, which reduced the data set to 14 stations and extended the cloudiness record back to 1952. SW SFC measurements were available at only two stations, so the SW SFC record was extended in time and to the other stations using a combination of the Angstrom and Hargreaves-Supit equations. The Hargreaves-Supit estimates of SW SFC were then corrected for trends in aerosols using the literature values of aerosol forcing over India. Monthly values and trends in satellite measurements of SW SFC from National Aeronautics and Space Administration's (NASA's) surface radiation budget (SRB) matched the aerosol-corrected Hargreaves-Supit estimates over 1984-1994 (RMSE = 11.9 W m-2, 5.2%). We conclude that meteorological station measurements of cloudiness, quality checked with satellite imagery and calibrated to local measurements of incoming radiation, provide an opportunity to extend radiation measurements in space and time. Reports of decreased cloudiness in other parts of continental Asia suggest that the cloud-aerosol trade-off observed in the Krishna basin may be widespread, particularly during the rainy seasons when changes in clouds have large effects on incoming radiation compared with aerosol forcing
    corecore