79 research outputs found

    Seasonlity of Kawasaki Disease: A global perspective

    Get PDF
    The authors are for the Kawasaki Disease Global Climate ConsortiumBACKGROUND: Understanding global seasonal patterns of Kawasaki disease (KD) may provide insight into the etiology of this vasculitis that is now the most common cause of acquired heart disease in children in developed countries worldwide. METHODS: Data from 1970-2012 from 25 countries distributed over the globe were analyzed for seasonality. The number of KD cases from each location was normalized to minimize the influence of greater numbers from certain locations. The presence of seasonal variation of KD at the individual locations was evaluated using three different tests: time series modeling, spectral analysis, and a Monte Carlo technique. RESULTS: A defined seasonal structure emerged demonstrating broad coherence in fluctuations in KD cases across the Northern Hemisphere extra-tropical latitudes. In the extra-tropical latitudes of the Northern Hemisphere, KD case numbers were highest in January through March and approximately 40% higher than in the months of lowest case numbers from August through October. Datasets were much sparser in the tropics and the Southern Hemisphere extra-tropics and statistical significance of the seasonality tests was weak, but suggested a maximum in May through June, with approximately 30% higher number of cases than in the least active months of February, March and October. The seasonal pattern in the Northern Hemisphere extra-tropics was consistent across the first and second halves of the sample period. CONCLUSION: Using the first global KD time series, analysis of sites located in the Northern Hemisphere extra-tropics revealed statistically significant and consistent seasonal fluctuations in KD case numbers with high numbers in winter and low numbers in late summer and fall. Neither the tropics nor the Southern Hemisphere extra-tropics registered a statistically significant aggregate seasonal cycle. These data suggest a seasonal exposure to a KD agent that operates over large geographic regions and is concentrated during winter months in the Northern Hemisphere extra-tropics.published_or_final_versio

    Evaluation of autoantibody binding to cardiac tissue in multisystem inflammatory syndrome in children and COVID-19 vaccination-induced myocarditis.

    Get PDF
    IMPORTANCE: Cardiac dysfunction and myocarditis have emerged as serious complications of multisystem inflammatory syndrome in children (MIS-C) and vaccines against SARS-CoV-2. Understanding the role of autoantibodies in these conditions is essential for guiding MIS-C management and vaccination strategies in children. OBJECTIVE: To investigate the presence of anticardiac autoantibodies in MIS-C or COVID-19 vaccine-induced myocarditis. DESIGN, SETTING, AND PARTICIPANTS: This diagnostic study included children with acute MIS-C or acute vaccine myocarditis, adults with myocarditis or inflammatory cardiomyopathy, healthy children prior to the COVID-19 pandemic, and healthy COVID-19 vaccinated adults. Participants were recruited into research studies in the US, United Kingdom, and Austria starting January 2021. Immunoglobulin G (IgG), IgM, and IgA anticardiac autoantibodies were identified with immunofluorescence staining of left ventricular myocardial tissue from 2 human donors treated with sera from patients and controls. Secondary antibodies were fluorescein isothiocyanate-conjugated antihuman IgG, IgM, and IgA. Images were taken for detection of specific IgG, IgM, and IgA deposits and measurement of fluorescein isothiocyanate fluorescence intensity. Data were analyzed through March 10, 2023. MAIN OUTCOMES AND MEASURES: IgG, IgM and IgA antibody binding to cardiac tissue. RESULTS: By cohort, there were a total of 10 children with MIS-C (median [IQR] age, 10 [13-14] years; 6 male), 10 with vaccine myocarditis (median age, 15 [14-16] years; 10 male), 8 adults with myocarditis or inflammatory cardiomyopathy (median age, 55 [46-63] years; 6 male), 10 healthy pediatric controls (median age, 8 [13-14] years; 5 male), and 10 healthy vaccinated adults (all older than 21 years, 5 male). No antibody binding above background was observed in human cardiac tissue treated with sera from pediatric patients with MIS-C or vaccine myocarditis. One of the 8 adult patients with myocarditis or cardiomyopathy had positive IgG staining with raised fluorescence intensity (median [IQR] intensity, 11 060 [10 223-11 858] AU). There were no significant differences in median fluorescence intensity in all other patient cohorts compared with controls for IgG (MIS-C, 6033 [5834-6756] AU; vaccine myocarditis, 6392 [5710-6836] AU; adult myocarditis or inflammatory cardiomyopathy, 5688 [5277-5990] AU; healthy pediatric controls, 6235 [5924-6708] AU; healthy vaccinated adults, 7000 [6423-7739] AU), IgM (MIS-C, 3354 [3110-4043] AU; vaccine myocarditis, 3843 [3288-4748] AU; healthy pediatric controls, 3436 [3313-4237] AU; healthy vaccinated adults, 3543 [2997-4607] AU) and IgA (MIS-C, 3559 [2788-4466] AU; vaccine myocarditis, 4389 [2393-4780] AU; healthy pediatric controls, 3436 [2425-4077] AU; healthy vaccinated adults, 4561 [3164-6309] AU). CONCLUSIONS AND RELEVANCE: This etiological diagnostic study found no evidence of antibodies from MIS-C and COVID-19 vaccine myocarditis serum binding cardiac tissue, suggesting that the cardiac pathology in both conditions is unlikely to be driven by direct anticardiac antibody-mediated mechanisms

    Three Linked Vasculopathic Processes Characterize Kawasaki Disease: A Light and Transmission Electron Microscopic Study

    Get PDF
    Kawasaki disease is recognized as the most common cause of acquired heart disease in children in the developed world. Clinical, epidemiologic, and pathologic evidence supports an infectious agent, likely entering through the lung. Pathologic studies proposing an acute coronary arteritis followed by healing fail to account for the complex vasculopathy and clinical course.Specimens from 32 autopsies, 8 cardiac transplants, and an excised coronary aneurysm were studied by light (n=41) and transmission electron microscopy (n=7). Three characteristic vasculopathic processes were identified in coronary (CA) and non-coronary arteries: acute self-limited necrotizing arteritis (NA), subacute/chronic (SA/C) vasculitis, and luminal myofibroblastic proliferation (LMP). NA is a synchronous neutrophilic process of the endothelium, beginning and ending within the first two weeks of fever onset, and progressively destroying the wall into the adventitia causing saccular aneurysms, which can thrombose or rupture. SA/C vasculitis is an asynchronous process that can commence within the first two weeks onward, starting in the adventitia/perivascular tissue and variably inflaming/damaging the wall during progression to the lumen. Besides fusiform and saccular aneurysms that can thrombose, SA/C vasculitis likely causes the transition of medial and adventitial smooth muscle cells (SMC) into classic myofibroblasts, which combined with their matrix products and inflammation create progressive stenosing luminal lesions (SA/C-LMP). Remote LMP apparently results from circulating factors. Veins, pulmonary arteries, and aorta can develop subclinical SA/C vasculitis and SA/C-LMP, but not NA. The earliest death (day 10) had both CA SA/C vasculitis and SA/C-LMP, and an "eosinophilic-type" myocarditis.NA is the only self-limiting process of the three, is responsible for the earliest morbidity/mortality, and is consistent with acute viral infection. SA/C vasculitis can begin as early as NA, but can occur/persist for months to years; LMP causes progressive arterial stenosis and thrombosis and is composed of unique SMC-derived pathologic myofibroblasts

    Therapeutic Effect of a Poly(ADP-Ribose) Polymerase-1 Inhibitor on Experimental Arthritis by Downregulating Inflammation and Th1 Response

    Get PDF
    Poly(ADP-ribose) polymerase-1 (PARP-1) synthesizes and transfers ADP ribose polymers to target proteins, and regulates DNA repair and genomic integrity maintenance. PARP-1 also plays a crucial role in the progression of the inflammatory response, and its inhibition confers protection in several models of inflammatory disorders. Here, we investigate the impact of a selective PARP-1 inhibitor in experimental arthritis. PARP-1 inhibition with 5-aminoisoquinolinone (AIQ) significantly reduces incidence and severity of established collagen-induced arthritis, completely abrogating joint swelling and destruction of cartilage and bone. The therapeutic effect of AIQ is associated with a striking reduction of the two deleterious components of the disease, i.e. the Th1-driven autoimmune and inflammatory responses. AIQ downregulates the production of various inflammatory cytokines and chemokines, decreases the antigen-specific Th1-cell expansion, and induces the production of the anti-inflammatory cytokine IL-10. Our results provide evidence of the contribution of PARP-1 to the progression of arthritis and identify this protein as a potential therapeutic target for the treatment of rheumatoid arthritis

    Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature

    Get PDF
    BACKGROUND: Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. METHODS: A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children. FINDINGS: We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures. CONCLUSIONS: Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. FUNDING: European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC

    Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children

    Get PDF
    Importance: Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. Objective: To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. Design, Setting, and Participants: Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets. Exposures: A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. Main Outcomes and Measures: Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group. Results: The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was implemented as a disease risk score in the validation group (130 children, with 23 definite bacterial, 28 definite viral, and 79 indeterminate infections; median age, 17 months; 57% male), all 23 patients with microbiologically confirmed definite bacterial infection were classified as bacterial (sensitivity, 100% [95% CI, 85%-100%]) and 27 of 28 patients with definite viral infection were classified as viral (specificity, 96.4% [95% CI, 89.3%-100%]). When applied to additional validation datasets from patients with meningococcal and inflammatory diseases, bacterial infection was identified with a sensitivity of 91.7% (95% CI, 79.2%-100%) and 90.0% (95% CI, 70.0%-100%), respectively, and with specificity of 96.0% (95% CI, 88.0%-100%) and 95.8% (95% CI, 89.6%-100%). Of the children in the indeterminate groups, 46.3% (63/136) were classified as having bacterial infection, although 94.9% (129/136) received antibiotic treatment. Conclusions and Relevance: This study provides preliminary data regarding test accuracy of a 2-transcript host RNA signature discriminating bacterial from viral infection in febrile children. Further studies are needed in diverse groups of patients to assess accuracy and clinical utility of this test in different clinical settings.This work was supported by the Imperial College Comprehensive Biomedical Research Centre (DMPED P26077); National Institute of Health Research (NIHR) Senior Investigator award (Dr Levin); Great Ormond St Hospital Charity (V1401) (Dr Wright); European Union’s Seventh Framework Program (EC-GA 279185) (EUCLIDS) (Dr Herberg); Imperial College-Wellcome Trust Antimicrobial Research Collaborative (ARC) Early Career Fellowship (RSRO 54990) (Dr Kaforou); Spanish Research Program (FIS; PI10/00540 and Intensificación actividad investigadora of National Plan I + D + I and FEDER funds) and Regional Galician funds (Promotion of Research Project 10 PXIB 918 184 PR) (Dr Martinón-Torres); Southampton NIHR Wellcome Trust Clinical Research Facility and NIHR Wessex Local Clinical Research Network; and Academic Medical Centre Amsterdam MD/PhD program 2013 (Ms Barendregt). The UK meningococcal disease cohort was established with grant support from the Meningitis Research Foundation (United Kingdom); the inflammatory disease cohort was supported by a Macklin Foundation grant (Dr Burns), National Institutes of Health grant U54-HL108460 (Dr Burns); and The Hartwell Foundation and The Harold Amos Medical Faculty Development Program/Robert Wood Johnson Foundation (Dr Tremoulet)

    Association of CCR2-CCR5 Haplotypes and CCL3L1 Copy Number with Kawasaki Disease, Coronary Artery Lesions, and IVIG Responses in Japanese Children

    Get PDF
    BACKGROUND: The etiology of Kawasaki Disease (KD) is enigmatic, although an infectious cause is suspected. Polymorphisms in CC chemokine receptor 5 (CCR5) and/or its potent ligand CCL3L1 influence KD susceptibility in US, European and Korean populations. However, the influence of these variations on KD susceptibility, coronary artery lesions (CAL) and response to intravenous immunoglobulin (IVIG) in Japanese children, who have the highest incidence of KD, is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used unconditional logistic regression analyses to determine the associations of the copy number of the CCL3L1 gene-containing duplication and CCR2-CCR5 haplotypes in 133 Japanese KD cases [33 with CAL and 25 with resistance to IVIG] and 312 Japanese controls without a history of KD. We observed that the deviation from the population average of four CCL3L1 copies (i.e., <or>four copies) was associated with an increased risk of KD and IVIG resistance (adjusted odds ratio (OR)=2.25, p=0.004 and OR=6.26, p=0.089, respectively). Heterozygosity for the CCR5 HHF*2 haplotype was associated with a reduced risk of both IVIG resistance (OR=0.21, p=0.026) and CAL development (OR=0.44, p=0.071). CONCLUSIONS/SIGNIFICANCE: The CCL3L1-CCR5 axis may play an important role in KD pathogenesis. In addition to clinical and laboratory parameters, genetic markers may also predict risk of CAL and resistance to IVIG

    Diagnosis of multisystem inflammatory syndrome in children by a whole-blood transcriptional signature

    Get PDF
    BACKGROUND: To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. METHODS: Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). RESULTS: In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. CONCLUSIONS: MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C

    Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoclasts (OCs) are involved in rheumatoid arthritis and in several pathologies associated with bone loss. Recent results support the concept that some medicinal plants and derived natural products are of great interest for developing therapeutic strategies against bone disorders, including rheumatoid arthritis and osteoporosis. In this study we determined whether extracts of <it>Emblica officinalis </it>fruits display activity of possible interest for the treatment of rheumatoid arthritis and osteoporosis by activating programmed cell death of human primary osteoclasts.</p> <p>Methods</p> <p>The effects of extracts from <it>Emblica officinalis </it>on differentiation and survival of human primary OCs cultures obtained from peripheral blood were determined by tartrate-acid resistant acid phosphatase (TRAP)-positivity and colorimetric MTT assay. The effects of <it>Emblica officinalis </it>extracts on induction of OCs apoptosis were studied using TUNEL and immunocytochemical analysis of FAS receptor expression. Finally, <it>in vitro </it>effects of <it>Emblica officinalis </it>extracts on NF-kB transcription factor activity were determined by gel shift experiments.</p> <p>Results</p> <p>Extracts of <it>Emblica officinalis </it>were able to induce programmed cell death of mature OCs, without altering, at the concentrations employed in our study, the process of osteoclastogenesis. <it>Emblica officinalis </it>increased the expression levels of Fas, a critical member of the apoptotic pathway. Gel shift experiments demonstrated that <it>Emblica officinalis </it>extracts act by interfering with NF-kB activity, a transcription factor involved in osteoclast biology. The data obtained demonstrate that <it>Emblica officinalis </it>extracts selectively compete with the binding of transcription factor NF-kB to its specific target DNA sequences. This effect might explain the observed effects of <it>Emblica officinalis </it>on the expression levels of interleukin-6, a NF-kB specific target gene.</p> <p>Conclusion</p> <p>Induction of apoptosis of osteoclasts could be an important strategy both in interfering with rheumatoid arthritis complications of the bone skeleton leading to joint destruction, and preventing and reducing osteoporosis. Accordingly, we suggest the application of <it>Emblica officinalis </it>extracts as an alternative tool for therapy applied to bone diseases.</p
    • …
    corecore