102 research outputs found

    Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms.

    Get PDF
    BackgroundAlthough differences in brain anatomy in autism have been difficult to replicate using manual tracing methods, automated whole brain analyses have begun to find consistent differences in regions of the brain associated with the social cognitive processes that are often impaired in autism. We attempted to replicate these whole brain studies and to correlate regional volume changes with several autism symptom measures.MethodsWe performed MRI scans on 24 individuals diagnosed with DSM-IV autistic disorder and compared those to scans from 23 healthy comparison subjects matched on age. All participants were male. Whole brain, voxel-wise analyses of regional gray matter volume were conducted using voxel-based morphometry (VBM).ResultsControlling for age and total gray matter volume, the volumes of the medial frontal gyri, left pre-central gyrus, right post-central gyrus, right fusiform gyrus, caudate nuclei and the left hippocampus were larger in the autism group relative to controls. Regions exhibiting smaller volumes in the autism group were observed exclusively in the cerebellum. Significant partial correlations were found between the volumes of the caudate nuclei, multiple frontal and temporal regions, the cerebellum and a measure of repetitive behaviors, controlling for total gray matter volume. Social and communication deficits in autism were also associated with caudate, cerebellar, and precuneus volumes, as well as with frontal and temporal lobe regional volumes.ConclusionGray matter enlargement was observed in areas that have been functionally identified as important in social-cognitive processes, such as the medial frontal gyri, sensorimotor cortex and middle temporal gyrus. Additionally, we have shown that VBM is sensitive to associations between social and repetitive behaviors and regional brain volumes in autism

    Effects of dietary protein and fiber at breakfast on appetite, ad libitum energy intake at lunch, and neural responses to visual food stimuli in overweight adults

    Get PDF
    Increasing either protein or fiber at mealtimes has relatively modest effects on ingestive behavior. Whether protein and fiber have additive or interactive effects on ingestive behavior is not known. Fifteen overweight adults (5 female, 10 male; BMI: 27.1 Β± 0.2 kg/mΒ²; aged 26 Β± 1 year) consumed four breakfast meals in a randomized crossover manner (normal protein (12 g) + normal fiber (2 g), normal protein (12 g) + high fiber (8 g), high protein (25 g) + normal fiber (2 g), high protein (25 g) + high fiber (8 g)). The amount of protein and fiber consumed at breakfast did not influence postprandial appetite or ad libitum energy intake at lunch. In the fasting-state, visual food stimuli elicited significant responses in the bilateral insula and amygdala and left orbitofrontal cortex. Contrary to our hypotheses, postprandial right insula responses were lower after consuming normal protein vs. high protein breakfasts. Postprandial responses in other a priori brain regions were not significantly influenced by protein or fiber intake at breakfast. In conclusion, these data do not support increasing dietary protein and fiber at breakfast as effective strategies for modulating neural reward processing and acute ingestive behavior in overweight adults.R01 MH102224 - NIMH NIH HHS; UL1 TR001108 - NCATS NIH HHS; UL1TR001108 - NCATS NIH HH

    Structural neural networks subserving oculomotor function in first-episode schizophrenia

    Get PDF
    BACKGROUND: Smooth pursuit and antisaccade abnormalities are well documented in schizophrenia, but their neuropathological correlates remain unclear. METHODS: In this study, we used statistical parametric mapping to investigate the relationship between oculomotor abnormalities and brain structure in a sample of first-episode schizophrenia patients (n = 27). In addition to conventional volumetric magnetic resonance imaging, we also used magnetization transfer ratio, a technique that allows more precise tissue characterization. RESULTS: We found that smooth pursuit abnormalities were associated with reduced magnetization transfer ratio in several regions, predominantly in the right prefrontal cortex. Antisaccade errors correlated with gray matter volume in the right medial superior frontal cortex as measured by conventional magnetic resonance imaging but not with magnetization transfer ratio. CONCLUSIONS: These preliminary results demonstrate that specific structural abnormalities are associated with abnormal eye movements in schizophrenia

    EMDR Effects on Pursuit Eye Movements

    Get PDF
    This study aimed to objectivize the quality of smooth pursuit eye movements in a standard laboratory task before and after an Eye Movement Desensitization and Reprocessing (EMDR) session run on seven healthy volunteers. EMDR was applied on autobiographic worries causing moderate distress. The EMDR session was complete in 5 out of the 7 cases; distress measured by SUDS (Subjective Units of Discomfort Scale) decreased to a near zero value. Smooth pursuit eye movements were recorded by an Eyelink II video system before and after EMDR. For the five complete sessions, pursuit eye movement improved after their EMDR session. Notably, the number of saccade intrusionsβ€”catch-up saccades (CUS)β€”decreased and, reciprocally, there was an increase in the smooth components of the pursuit. Such an increase in the smoothness of the pursuit presumably reflects an improvement in the use of visual attention needed to follow the target accurately. Perhaps EMDR reduces distress thereby activating a cholinergic effect known to improve ocular pursuit

    Neuroanatomical Circuitry Associated with Exploratory Eye Movement in Schizophrenia: A Voxel-Based Morphometric Study

    Get PDF
    Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM) dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS) and widespread gray matter density (GMD) reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA) 17], the left cuneus (BA 18), the left superior occipital cortex (BA 18/19), the left superior frontal gyrus (BA 6), the left cerebellum, the right lingual cortex (BA 17/18), the right middle occipital cortex (BA19), the right inferior temporal cortex (BA 37), the right dorsolateral prefrontal cortex (BA 46) and bilateral precentral gyri (BA 6) extending to the frontal eye fields (FEF, BA 8). To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia

    The Infrared Spectra of Bispyridinium Oximes

    No full text

    Attentional integration between anatomically distinct stimulus representations in early visual cortex

    No full text

    Stimulus-dependent effects on right ear advantage in schizophrenia

    No full text
    Jason Smucny,1,3 Korey Wylie,3 Jason Tregellas1–31Neuroscience Program, University of Colorado Anschutz Medical Campus, 2Research Science, Denver VA Medical, Center, 3Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USABackground: When presented with different sounds in each ear (dichotic listening), healthy subjects typically show a preference for stimuli heard in the right ear, an effect termed "right ear advantage". Previous studies examining right ear advantage in schizophrenia have been inconsistent, showing either decreased or increased advantage relative to comparison subjects. Given evidence for enhanced semantic processing in schizophrenia, some of this inconsistency may be due to the type of stimuli presented (words or syllables). The present study examined right ear advantage in patients and controls using both words and syllables as stimuli.Methods: Right ear advantage was compared between 20 patients with schizophrenia and 17 healthy controls. Two versions of the task were used, ie, a consonant-vowel pairing task and a fused rhymed words task.Results: A significant group × task interaction was observed. Relative to healthy controls, patients showed a greater difference on the syllable-based task compared with the word-based task. The number of distractors marked during the syllable-based task was inversely correlated with score on the Global Assessment of Function Scale.Conclusion: The findings are consistent with a left hemisphere dysfunction in schizophrenia, but also suggest that differences may be stimulus-specific, with a relative sparing of the deficit in the context of word stimuli. Performance may be related to measures of social, occupational, and psychological function.Keywords: schizophrenia, right ear advantage, dichotic, distractio
    • …
    corecore