88 research outputs found

    Enterococcal periprosthetic joint infection: clinical and microbiological findings from an 8-year retrospective cohort study

    Get PDF
    BACKGROUND: Treatment of enterococcal periprosthetic joint infections (PJI) is challenging due to non-standardized management strategies and lack of biofilm-active antibiotics. The optimal surgical and antimicrobial therapy are unknown. Therefore, we evaluated characteristics and outcome of enterococcal PJI. METHODS: Consecutive patients with enterococcal PJI from two specialized orthopedic institutions were retrospectively analyzed. Both institutions are following the same diagnostic and treatment concepts. The probability of relapse-free survival was estimated using Kaplan-Meier survival curves and compared by log-rank test. Treatment success was defined by absence of relapse or persistence of PJI due to enterococci or death related to enterococcal PJI. Clinical success was defined by the infection-free status, no subsequent surgical intervention for persistent or perioperative infection after re-implantation and no PJI-related death within 3 months. RESULTS: Included were 75 enterococcal PJI episodes, involving 41 hip, 30 knee, 2 elbow and 2 shoulder prostheses. PJI occurred postoperatively in 61 episodes (81%), hematogenously in 13 (17%) and by contiguous spread in one. E. faecalis grew in 64 episodes, E. faecium in 10 and E. casseliflavus in one episode(s). Additional microorganism(s) were isolated in 38 patients (51%). Enterococci were susceptible to vancomycin in 73 of 75 isolates (97%), to daptomycin in all 75 isolates, and to fosfomycin in 21 of 22 isolates (96%). The outcome data was available for 66 patients (88%). The treatment success after 3 years was 83.7% (95% confidence interval [CI]; 76.1-96.7%) and the clinical success was 67.5% (95% CI; 57.3-80.8%). In 11 patients (17%), a new PJI episode caused by a different pathogen occurred. All failures occurred within 3 years after surgery. CONCLUSION: About half of enterococcal PJI were polymicrobial infections. The treatment success was high (84%). All treatment failures occurred within the first 3 years after revision surgery. Interestingly, 17% of patients experienced a new PJI caused by another pathogen at a later stage

    Inhibition of AChE by malathion and some structurally similar compounds

    Get PDF
    Inhibition of bovine erythrocyte acetylcholinesterase (free and immobilized on controlled pore glass) by separate and simultaneous exposure to malathion and malathion transformation products which are generally formed during storage or through natural or photochemical degradation was investigated. Increasing concentrations of malathion, its oxidation product malaoxon, and its isomerisation product isomalathion inhibited free and immobilized AChE in a concentration-dependent manner. K-I, the dissociation constant for the initial reversible enzyme inhibitor-complex, and k(3), the first order rate constant for the conversion of the reversible complex into the irreversibly inhibited enzyme, were determined from the progressive development of inhibition produced by reaction of native AChE with malathion, malaoxon and isomalathion. KI values of 1.3 x 10(-4) M-1, 5.6 x 10(-6) M-1 and 7.2 x 10(-6) M-1 were obtained for malathion, malaoxon and isomalathion, respectively. The IC50 values for free/immobilized AChE, (3.7 +/- 0.2)10(-4) M/(1.6 +/- 0.1)10(-4), (2.4 +/- 0.3)10(-6)/(3.4 +/- 0.1)10(-6) M and (3.2 +/- 0.3)10(-6) M/(2.7 +/- 0.2)10(-6) M, were obtained from the inhibition curves induced by malathion, malaoxon and isomalathion, respectively. However, the products formed due to photoinduced degradation, phosphorodithioic O,O,S-trimethyl ester and O,O-dimethyl thiophosphate, did not noticeably affect enzymatic activity, while diethyl maleate inhibited AChE activity at concentrations GT 10 mM. Inhibition of acetylcholinesterase increased with the time of exposure to malathion and its inhibiting by-products within the interval from 0 to 5 minutes. Through simultaneous exposure of the enzyme to malaoxon and isomalathion, an additive effect was achieved for lower concentrations of the inhibitors (in the presence of malaoxon/isomalathion at concentrations 2 x 10(-7) M/2 x 10(-7) M, 2 x 10(-7) M/3 x 10(-7) M and 2 x 10(-7) M/4.5 x 10(-7)M), while an antagonistic effect was obtained for all higher concentrations of inhibitors. The presence of a non-inhibitory degradation product (phosphorodithioic O,O,S-trimethyl ester) did not affect the inhibition efficiencies of the malathion by-products, malaoxon and isomalathion

    Lower Success Rate of Debridement and Implant Retention in Late Acute versus Early Acute Periprosthetic Joint Infection Caused by Staphylococcus spp. Results from a Matched Cohort Study

    Get PDF
    Background Surgical debridement, antibiotics and implant retention (DAIR) is currently recommended by international guidelines for both early acute (postsurgical) and late acute (hematogenous) periprosthetic joint infections (PJIs). However, due to a different pathogenesis of infection, a different treatment strategy may be needed. Questions/purposes (1) Compared with early acute PJIs, are late acute PJIs associated with a higher risk of DAIR failure? (2) When stratified by microorganism, is the higher risk of failure in late acute PJI associated with Staphylocococcus aureus infection? (3) When analyzing patients with S. aureus infection, what factors are independently associated with DAIR failure? Methods In this multicenter observational study, early acute and late acute PJIs treated with DAIR were retrospectively evaluated and matched according to treating center, year of diagnosis, and infection-causing microorganism. If multiple matches were available, the early acute PJI diagnosed closest to the late acute PJI was selected. A total of 132 pairs were included. Treatment success was defined as a retained implant during follow-up without the need for antibiotic suppressive therapy. Results Late acute PJIs had a lower treatment success (46% [60 of 132]) compared with early acute PJIs (76% [100 of 132]), OR 3.9 [95% CI 2.3 to 6.6]; p <0.001), but the lower treatment success of late acute PJIs was only observed when caused by Staphylococcus spp (S. aureus: 34% versus 75%; p <0.001; coagulase-negative staphylococci: 46% versus 88%; p = 0.013, respectively). On multivariable analysis, late acute PJI was the only independent factor associated with an unsuccessful DAIR when caused by S. aureus (OR 4.52 [95% CI 1.79 to 11.41]; p <0.001). Conclusions Although DAIR seems to be a successful therapeutic strategy in the management of early acute PJI, its use in late acute PJI should be reconsidered when caused by Staphylococcus spp. Our results advocate the importance of isolating the causative microorganism before surgery

    How to Handle Concomitant Asymptomatic Prosthetic Joints During an Episode of Hematogenous Periprosthetic Joint Infection:a Multicenter Analysis

    Get PDF
    BACKGROUND: Prosthetic joints are at risk of becoming infected during an episode of bacteremia, especially during Staphylocococcus aureus bacteremia. However, it is unclear how often asymptomatic periprosthetic joint infection (PJI) occurs, and whether additional diagnostics should be considered. METHODS: In this multicenter study, we retrospectively analyzed a cohort of patients with a late acute (hematogenous) PJI between 2005-2015 who had concomitant prosthetic joints in situ. Patients without at least 1 year of follow-up were excluded. RESULTS: We included 91 patients with a hematogenous PJI and 108 concomitant prosthetic joints. The incident PJI was most frequently caused by Staphylococcus aureus (43%), followed by streptococci (26%) and Gram-negative rods (18%). Of 108 concomitant prosthetic joints, 13 were symptomatic, of which 10 were subsequently diagnosed as a second PJI. Of the 95 asymptomatic prosthetic joints, 1 PJI developed during the follow-up period and was classified as a "missed" PJI at the time of bacteremia with S. aureus (1.1%). Infected prosthetic joints were younger than the noninfected ones in 67% of cases, and prosthetic knees were affected more often than prosthetic hips (78%). CONCLUSIONS: During an episode of hematogenous PJI, concomitant asymptomatic prosthetic joints have a very low risk of being infected, and additional diagnostic work-up for these joints is not necessary

    How to Handle Concomitant Asymptomatic Prosthetic Joints During an Episode of Hematogenous Periprosthetic Joint Infection, a Multicenter Analysis

    Get PDF
    [Background] Prosthetic joints are at risk of becoming infected during an episode of bacteremia, especially during Staphylocococcus aureus bacteremia. However, it is unclear how often asymptomatic periprosthetic joint infection (PJI) occurs, and whether additional diagnostics should be considered.[Methods] In this multicenter study, we retrospectively analyzed a cohort of patients with a late acute (hematogenous) PJI between 2005–2015 who had concomitant prosthetic joints in situ. Patients without at least 1 year of follow-up were excluded.[Results] We included 91 patients with a hematogenous PJI and 108 concomitant prosthetic joints. The incident PJI was most frequently caused by Staphylococcus aureus (43%), followed by streptococci (26%) and Gram-negative rods (18%). Of 108 concomitant prosthetic joints, 13 were symptomatic, of which 10 were subsequently diagnosed as a second PJI. Of the 95 asymptomatic prosthetic joints, 1 PJI developed during the follow-up period and was classified as a “missed” PJI at the time of bacteremia with S. aureus (1.1%). Infected prosthetic joints were younger than the noninfected ones in 67% of cases, and prosthetic knees were affected more often than prosthetic hips (78%).[Conclusions] During an episode of hematogenous PJI, concomitant asymptomatic prosthetic joints have a very low risk of being infected, and additional diagnostic work-up for these joints is not necessary.Peer reviewe

    The efficacy of suppressive antibiotic treatment in patients managed non-operatively for periprosthetic joint infection and a draining sinus

    Get PDF
    Objectives: Patients with prosthetic joint infections (PJIs) not suitable for curative surgery may benefit from suppressive antibiotic therapy (SAT). However, the usefulness of SAT in cases with a draining sinus has never been investigated. Methods: A multicentre, retrospective observational cohort study was performed in which patients with a PJI and a sinus tract were eligible for inclusion if managed conservatively and if sufficient follow-up data were available (i.e. at least 2 years). SAT was defined as a period of &gt; 6 months of oral antibiotic therapy. Results: SAT was initiated in 63 of 72 (87.5 %) included patients. Implant retention during follow-up was the same in patients receiving SAT vs. no SAT (79.4 % vs. 88.9 %; pCombining double low line0.68). In total, 27 % of patients using SAT experienced side effects. In addition, the occurrence of prosthetic loosening in initially fixed implants, the need for surgical debridement, or the occurrence of bacteremia during follow-up could not be fully prevented with the use of SAT, which still occurred in 42 %, 6.3 %, and 3.2 % of cases, respectively. However, the sinus tract tended to close more often (42 % vs. 13 %; pCombining double low line0.14), and a higher resolution of pain was observed (35 % vs. 14 %; pCombining double low line0.22) in patients receiving SAT. Conclusions: SAT is not able to fully prevent complications in patients with a draining sinus. However, it may be beneficial in a subset of patients, particularly in those with pain or the hindrance of a draining sinus. A future prospective study, including a higher number of patients not receiving SAT, is needed
    corecore