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Aseptic Loosening of Total Hip  
Arthroplasty as a Result of Local 

 Failure of Tissue Homeostasis 

Jiri Gallo et al.* 
Department of Orthopaedics, Palacky University, Teaching Hospital Olomouc, 

Czech Republic 

1. Introduction (Gallo) 

Total hip arthoplasty (THA) is the most effective and safest method for treating severe 
degenerative, post-traumatic and other diseases of the hip joint. It is estimated that more 
than 1,000,000 THAs are performed each year globally. The incidence of primary THA 
increased in the period 1990 to 2002 in the USA from 47/100,000 to 69/100,000 (Kurtz et al. 
2007). A similar study in Denmark reported an increased rate of THAs from 101/100,000 to 
131/100,000 during the period 1996 to 2002 (Pedersen et al. 2005). More importantly, 
modelled future projections expect further increase in the need for THAs.  
It is believed that THA can reliably relieve pain and improve function in the majority of 

patients for a period of 15 to 20 years or more postoperatively. On this basis, with the 

extension of THAs to a younger and generally more active population, the expected time of 

service of THAs would be insufficient and the number of revision surgeries would therefore 

increase during this time. The Kaplan-Meier ten-year revision-free survival estimates for 

younger patients range from 72% (95%CI: 67-76) in Finland to 86% (95%CI: 84,5-88,2) in 

Sweden (Corbett et al. 2010). Hence, 14% to 28% of such patients on average did not achieve 

a 10-year THA functioning without revision. 

The main reason for late failure of THA is aseptic loosening accompanied by osteolysis followed 
by infection and instability of the THA that compromise more the early postoperative 
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period than the later one (Ulrich, Seyler et al. 2008). For this reason the above mentioned 
increase in rate of primary THAs is closely associated with increase in demand for revision 
THAs. The incidence of revision THAs in the USA increased from 9.5/100,000 to 
15.2/100,000 between 1990 and 2002 and the projections by 2030 are even more impressive 
(Kurtz et al. 2007). With this in mind, research on the pathophysiology of aseptic loosening 
and osteolysis is of paramount importance and well justified.  
This chapter provides a background on the current theory of aseptic loosening and 
osteolysis together with a brief overview of preventive measures.  

2. Overview of the current theories on aseptic loosening and periprosthetic 
osteolysis (Gallo, Goodman) 

The term “aseptic loosening” is closely related to the finding of gross mechanical instability at 
the interface between the implant and bone bed (Fig. 1). It is generally associated with pain and 
loss of function although it may also occur asymptomatically. Regarding the prevention the 
key question is what is the mechanism that first erodes the firm bond between implant and 
the bone bed.  
 

 

Fig. 1. Severe medial migration of the cemented cup at the right site in 86 year old female (17 
yrs. postoperatively) 

Aseptic loosening of total hip arthroplasty is hypothesised to be the result of a harmful 
combination of mechanical and biological events destroying the bond between the implant and bone 
bed. To date, a variety of host-, implant- and surgery-related factors have been delineated to 
explain the development of aseptic loosening and osteolysis. Some of these are accepted by 
the scientific community, others are the subject of intensive research, while yet others are 
only speculative having little or no clinical or research evidence. 
There are specific factors that directly increase the risk of aseptic loosening while others 
induce conditions that increase the probability of developing aseptic loosening. A well 
acknowledged factor in preventing aseptic loosening is surgical experience and technique 
resulting in firm fixation and correct implant placement. Failure to achieve sound and long-
term fixation of the implant to the bone bed is closely associated with premature aseptic 
loosening (Mjoberg 1994). Factors associated with the development of severe periprosthetic 
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osteolysis significantly influence the rate of aseptic loosening as it is believed that severe 
bone loss can facilitate the process of destabilisation of the implant regardless of its original 
sound placement (Gallo et al. 2010).  

2.1 Mechanical theories on aseptic loosening 

Proponents of mechanical theories explain aseptic loosening and periprosthetic osteolysis to 
be the result of predominantly mechanical events with stress and strain being the major drivers 
of the disease. These refer to the stresses and strains affecting the implant-bone interface 
during each step until they overwhelm the firmness of the interface. On this basis, Mjöberg 
stressed the importance of the quality of the initial fixation because he and others had 
revealed the close association between early migration of implant and risk of premature 
failure of THA due to aseptic loosening (Mjoberg 1994). Unfortunately, there is no agreed 
threshold of migration above which loosening can be predicted. Further it is not possible to 
compare directly the migration data of different studies (Derbyshire et al. 2009). In addition, 
it seems that the majority of cemented cups migrate during the first postoperative year and 
thus the revision rate is poorly predictable one year postoperatively even in cases with 
significant migration (Aspenberg et al. 2008). For this reason, the “mechanical theory“ 
should be revised to include at least the distinction between  stable, osseointegrated 
prostheses and those in which osseointegration has not developed after the first 
postoperative year and exhibit radiolucency around the implant, and continuous migration 
resulting in loosening.  

2.2 Biological theories on aseptic loosening 

According to biological theory, aseptic loosening is the result of a series of predominantly 

biological processes. Of these, the most important is the complex adverse host response to 

prosthetic particles and by-products which produce particle disease. Willert and Semlitsch 

were the first to introduce the concept of aseptic loosening as a result of  periprosthetic 

tissue reaction to massive amounts of prosthetic microparticles (Willert and Semlitsch 1977). 

The key concept in particle disease is that very small prosthetic particles (the size of 

micrometers and less) stimulate periprosthetic cells to express proinflammatory/ pro-osteoclastic 
cytokines and other substances that orchestrate increased accumulation/activity/survival of 

osteoclasts, and inhibit the osteogenic activity of osteoblasts. As a result, osteoresorption 

predominates over osteogenesis at each bone multicellular unit on the bone surface around 

the implant leading eventually to macroscopically observed bone defects. The degree of 

bone loss according to this concept is a function of number and depth of deregulated 

resorption sites.  

The expansion of particle disease across the joint is facilitated by joint fluid that is 

abundantly synthesized by synovial-like macrophages and fibroblasts. Joint fluid 

contributes to conversion of M0 on M1 macrophages (Part 4.4). In addition, it washes the 

prosthetic microparticles from the articulating surfaces, mediates signal molecules and 

enzymes and delivers them to the bone. For this reason, particle disease can recur at new 

sites, contributing in this way to overall weakening of the bone-implant interface.  

A question remains as to what other biological factors underlie the destabilization of the 
implant associated with severity of bone defects. Of these, aging of the bone bed 
(senescence), stress-shielding, and cumulative fatigue changes at the bone-implant interface 
may contribute to weakening of the implant-bone fixation. Eventually, these separately or 
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together lead to degradation of the fixation interface and increase the probability of aseptic 
loosening. The ultimate pathway of aseptic loosening is undoubtedly of mechanical origin. 
For this reason, a comprehensive theory of aseptic loosening has been proposed involving 
both biological and mechanical factors.  

2.3 Comprehensive theory on aseptic loosening 

A valid theory requires consideration of both mechanical and biological factors in the 
pathophysiology of aseptic loosening and osteolysis (Gallo et al. 2002). The micromotions arising 
at the bone-implant interface during normal gait cycles induce a bone resorption which 
occurs before any wear debris particles enter the system. Following a number of “empty 
spaces” at the implant-bone interface are quickly filled by fibrous membrane. Repeated 
“compression” (stress) of the membrane during each step can induce proliferation of 
fibroblasts that synthesize an abundant extracellular matrix to adapt to the mechanical 
stresses and strains around an implant. According to this concept, the process of aseptic 
loosening is about sequential hypertrophy of the interface membrane (biological reaction to 
mechanical strain; Fig. 2). At a later stage, the hypertrophic membrane facilitates the 
delivery of particles, cytokines, enzymes and other molecules from the joint space to the 
bone bed interconnecting mechanical and biological factors.  
 

 

Fig. 2. Showing the process of gradual stem loosening as a result of hypertrophy of 
interface membrane (white) leading eventually to stem subsidence (reproduced by courtesy 
of Jiri Lostak, MD) 

The mechanical environment can induce differentiation of mesenchymal stem cells via up-, 
down-regulation of mechano-sensitive genes and in this way it can influence  tissue 
differentiation resulting for instance in excessive formation of fibrous tissue (Aspenberg et 
al. 2000). Interestingly, macrophages can be activated by cyclic pressure (0.138 MPa) alone. 
In fact, there is significant increase in their expression of TNF-┙, IL-1┚ and IL-6 when treated 
jointly with polyethylene particles and pressure (McEvoy et al. 2002). Other studies have 
demonstrate the relative sensitivity of macrophages to simultaneous application of PMMA 
particles and mechanical strain (Jones et al. 2006). With this in mind, one may conclude that 
mechanical conditions can directly regulate the proliferation and expression capacity of a 
particular cell group. Another scenario is based on evidence that high-pressure waves of the 
synovial joint fluid can induce bone necrosis (Fahlgren et al. 2010). An abundance of joint 
fluid is synthesized by synovial-like macrophages and fibroblasts inside the artificial joint as 
a response to inflammatory and secretory signals produced by particle disease. The degree 
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of intraarticular pressure depends in part on the volume of  joint fluid, changes in  position 
of the joint, and  volume/draining capacity of the joint space assuming that high-volume 
and effectively drained joint space are  associated with lower intraarticular pressures and 
vice versa. Other factors that may be important, but are not readily analysed include at least 
interactions between  implant and its surroundings in terms of local tissue homeostasis 
maintenance/distortion, favourable composition of joint fluid, type of lubrication, 
individual motion/stress pattern, and genetic predisposition to aseptic loosening.   

3. Local bone-soft tissue adaptations on an implant 

3.1 What we know about the physiological reactions of the local tissues on the 
prosthesis and its waste products (Konttinen, Pajarinen, Mackiewicz, Takagi, Jämsen, 
Takakubo, Gallo) 

A lot of research has been done on aseptic implant loosening, but there are few studies 
about the physiological, adaptive host responses to joint implants with a long and painless 
life-in-service. Loosened implants are surrounded by a fibrous implant capsule (Fig. 2). 
Contrary, well (physiologically) fixed implants are not characterized by fibrous implant 
capsule, synovial-membrane-like interface membrane (SLIM) or aggressive granulomatosis. 
They are characterized by some other features described below.  

3.1.1 Physiological fixation of cemented implants 

Cemented implants are fixed to bone with bone cement, polymethylmethacrylate (PMMA). 
Hip implant surgery damages descending metaphyseal arteries during the resection of the 
femoral head and the intramedullary nutritional artery during the implant bed preparation, 
which contribute to ischemia, lowering of pH and bone infarctions (Willert et al. 1974; 
Konttinen et al. 2001).  
Willert and co-workers made a cadaver study of well-fixed implants to describe the 
physiological three-phase response of host bone to cement fixed implants. Toxic and 
lipolytic PMMA monomers and the exothermic polymerisation cause a marginal rim of 
necrosis of bone trabeculae at the cement-bone interface. After three weeks and up to two 
years postoperatively signs of repair of the implant bed are seen. This is perhaps in part 
stimulated by a local release of bone growth factors from the bone matrix and activated 
osteoclasts. Necrotic bone and bone fragments are resorbed by osteoclasts and macrophages. 
Newly produced or extended, irregularly orientated bone trabeculae grow as a lacework-
like structure into the relatively smooth necrotic-fibrin clot-fatty-fibrotic bone-cement 
interface, which contains cement plugs, some of which protrude to reach direct contact with 
peri-implant bone. After two years bone repair is followed by remodelling of bone 
trabeculae, which are separated from the cement surface by a 0.1-1.5 mm thick fibrous 
membrane. This membrane grows into the empty spaces between the rough or cracked 
cement surface and contains some polyacrylamide pearls (from non-polymerized PMMA 
powder) close to the cement surface surrounded (isolated) by foreign-body giant cells and 
granulomas. Trabeculae of the already remodelled peri-implant bone were in the 
longitudinal sections orientated in parallel to the cement surface (Willert et al. 1974). 
This work was nicely extended by Jasty and co-workers, who studied serial horizontal 

sections of the proximal femoral bone that enclosed the cemented femoral component still in 

place in the implant bed. They confirm that the bone is remodelled and disclose a curious 

pattern for this remodelling. The cement mantles of the well-fixed implants are surrounded 
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by an inner, secondary dense neocortex. There is bone ingrowth from the neocortex into the 

undulating surface of the cement mantle. This neocortex is connected to the outer, primary 

femoral cortex by new trabecular bone struts. These authors reported very little fibrous tissue 

intervening between the host bone and cement mantle around well-fixed implants (Jasty et al. 

1990). They also suggest that loosening of the implant from the cement mantle (debonding) 

and fractures and fragments of the cement mantle coupled with ingrowth of a fibrous tissue 

layer between the implant surface and cement mantle may trigger loosening (Part 2.3). Based 

on this, stable, intact and firm cement mantle together with adaptive physiological bone remodelling 

response around are associated with a well fixed symptomless cemented implant.  

3.1.2 Physiological fixation of uncemented implants 

A second mode of fixation is based on the use of special design features and surface 
technologies enabling bone interdigitating ingrowth to the porous surface of the implant 
(osteoconductive ingrowth surfaces). Biomaterials and coatings can modulate bone 
ingrowth. Finally, successful fixation of uncemented implants depends also on the 
remodelling of already existing bone.  
The initial fixation of the porous-coated implants to bone depends on the shape of the 
implant (e.g. wedge fit, threaded design), and/or the tight micromechanical locking (press 
fit, friction fit, scratch fit, interference fit) of an implant to the bone bed. The initial stability of 
the cementless implant is considered to be important for the secondary stabilization via bone 
ingrowth. The rough implant surface destined to fix the implant to bone has to come in 
contact with bone because bone cannot bridge very large gaps, perhaps exceeding 1-2 
millimetres between the implant surface and bone. The micromotion at the bone-implant 
interface is first larger but diminishes below ~40 μm as bone grows to the surface of the 
implant. According to cadaver studies bone ingrowth can reach up to 50% in well-fixed 
implant while further penetration of the porous spaces available at the contact surface can 
reach 80%. These values vary according to the quality of bone, type of implant/surface 
technology, and zone of implant (Engh et al. 1995).  
Also this process is dependent on bone remodelling, i.e. formation of bone multicellular 
units (BMU) undergoing activation-reversal-formation (ARF) cycles, with net production of 
new cortical and trabecular bone. It is not quite certain, what is the micromotion at the bone-
ingrowth surface area preventing bone ingrowth. In simulated stair climbing micromotion 
of cementless implants it is up to 280 μm (Burke et al. 1991) which is close to 100-400 μm 
pore size commonly used in the porous coated implants still allowing bone ingrowth. The 
best implant-bone contact (bone ingrowth) is achieved in contact with compact, cortical 
bone characterized by Haversian channels. In other areas the porous surface may be in 
contact with ingrown cancellous, medullary bone without Haversian channels 
interdigitating rough implant surface. By this way the implant surface is connected with the 
endosteal side of the cortex (Engh et al. 1995). 

3.2 Does it exist something like long-term tolerance to an implant? (Takakubo, 
Pajarinen, Konttinen, Trebse, Coer, Mackiewicz, Takagi, Gallo) 

Assume that an experienced surgeon places well and firmly an appropriate implant. During 
a functioning of such THA soluble and insoluble particles of prosthetic biomaterials are 
deliberated from the prosthetic joint surfaces and the implant-bone interface has to 
withstand mechanical stresses on levels of multiple body weight. The question is on the 
mechanisms preventing premature destabilization of such implants. Although aseptic 
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loosening and osteolysis are of multifactorial origin and many factors cannot be included 
into the failure analysis we believe that there is some place for a concept of host long-term 
tolerance to implant. Biological and non-biological circumstances (factors) can be associated 
with long-term painless and stable THAs.   

3.2.1 Genetic background of tolerance to an implant 

Tolerance may be defined as a state of progressively decreased responsiveness to a wear and 
corrosion particles as well as other stresses related to implant functioning. It is reasonable to 
hypothesize that the genetic background (host responsiveness) of the implant patient plays a 
role in loosening of or tolerance to the implant. Technically the approach taken has been to 
look for eventual single-nucleotide polymorphisms (SNPs) in candidate genes. SNP refers to 
single nucleotide base changes in the coding DNA at a particular site (natural sequence 
variants, alleles). Candidates for this approach have been sought among molecules, which 
according to the current understanding play a role in the pathomechanism of loosening. 
These candidates form three main classes, namely molecules regulating bone metabolism 
(influencing the fixation of an implant and maintenance of it), proteinases involved in 
collagenous tissue destruction (size of the effective joint space), and chemokines/ cytokines 
regulating inflammatory response to wear debris (aggressive granulomatosis). These 
processes are at least in part genetically regulated which opens theoretically the opportunity 
to screen the population preoperatively for risk patients. Current status in this field is 
described in part 4.7. 
In sensitized individuals even low local metal ion concentrations, such as cobalt and chrome, 
can cause T lymphocyte-mediated, delayed-type hypersensitivity (DTH) reactions. Metal ions can 
bind to self-peptides in the antigen presenting groove of the major histocompatibility complex 
(MHC) class II molecule altering self to altered-self, which is by the adaptive immune response 
recognized as non-self. Metal ions can bind to a protein altering its processing so that 
immunogenic cryptic (instead of tolerance-inducing dominant) epitopes are disclosed, causing 
DTH. They can modify MHC-II making it an immune-incompatible, “a foreign tissue-type 
antigen” (like in rejection of allogenic transplants) or they can activate the T-cell a bit like 
superantigens do. Tolerance to implant would require also immune tolerance against hapten-
induced hypersensitivity reactions and in special cases it might be possible to test the implant 
patient-to-be pre-operatively for an eventual hypersensitivity with the help of epicutaneous 
patch or gamma-spot like tests (Part 4.5).  
In a tolerant immunogenetic background wear particles are together with apoptotic bodies 
cleaned by M0 macrophages. Some co-factors may interfere with this tolerant host response to 
implant. Biomechanical loading (compression, tension, shear force) at the implant-bone 
interface may be one such cofactor. Occasional infections, microbial pathogen-associated 
molecular structures (PAMPs, e.g. lipopolysaccharide) and release of alarmins (e.g. high 
mobility group box 1) from damaged tissues (e.g. excessive biomechanical loading or 
ischemia) and necrotic or even activated cells can transform the M0 macrophage response 
into aggressive granulomatosis, which leads to peri-implant bone destruction. This in part, 
because both PAMPs and alarmins can opsonize wear particles. Various pattern recognizing 
receptors, such as Toll-like receptors (TLRs), mediate innate host responses and their SNPs 
may play a role here (Takagi et al. 2007; Pajarinen et al. 2010). In addition, primary and long-
term fixation of the cemented and uncemented implants is dependent on the remodelling 
ability of the bone which is under genetic control. Peri-implant cells have to resorb damaged 
or necrotic peri-implant bone, repair it and then remodel it so that it maintains implant well 
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fixed to the bone (Part 3.1). If fibrous interface and later synovial membrane-like interface or 
even foreign body-driven aggressive granulomatosus develop, activation-reversal-formation 
(ARF) cycles begin to dominate in bone multicellular units (BMUs) in peri-implant bone, 
contributing to the osteolysis and loosening of an implant.  

3.2.2 Other contributors to long-term tolerance of total hip arthroplasty  

Our knowledge on the factors associated with long-term functioning of a stable implant is in 
part based on comparison of tissues from patients with long-term survival of implant with 
tissues from those who suffer from loosening. In this line, it was for instance proposed that 
successful patients, in contrast to unsuccessful ones, could effectively clear the joint space from 
the wear and other particles and this way have diminished inflammatory stimulation 
(Zolotarevova et al. 2010). Also other patient-related factors, like gender, age, body mass index or 
even particular chronic medication (e.g. statins, bisphosphonates, nonsteroidal antiinflammatory 
drugs) could contribute to implant tolerance (Thillemann et al. 2010a; Thillemann et al. 2010b). 
Female gender seems to protect both the cemented and uncemented cups from early failure 
(Roder et al. 2010). Tolerance to implant seems to be improved with increasing age of the 
patients which could be explained not only by a decrease in activity level with no excessive 
cyclic loading in elderly patients but also a decreased responsiveness of the immune-
inflammatory system might play some role (Ogino et al. 2008). Normal body mass index 
contributes to good implant tolerance at least in part via influencing bone remodelling around 
the implant and magnitude of mechanical stresses affecting bone-implant interface. A good 
general health and medication not adversely interfering with bone metabolism together 
with a good local quality of the bone could contribute to long-term maintenance of implant-
bone fixation. In this line, it is advisable to check the health status and medication of 
particularly elderly patients to optimize bone metabolism and bone strength. Targeting the 
dizziness and an individualized training program (muscle strength, coordination, and 
balance) together with interventions to the physical living environment of the patient, e.g. 
carpets, handrails, bedrails, illumination, doorsteps and various technology-related aids, 
could protect the implant from excessive loads. 
Implant fixation and loading are interrelated and should be in balance for implant tolerance 
(Part 3.1). The number (cyclic regular loading) and type (on a smooth or declining surface, 
stairs, squatting etc.) of steps taken and any accidental or traumatic overshoots (not 
considered in computer controlled implant simulation studies) play a role. The number of 
steps taken can vary from 395 to 17718 steps per day, corresponding from 144175 to 
6467070 steps per year (Schmalzried et al. 1998). In this way, it has been emphasized that 
the occurrence of polyethylene wear is a function of use, not time in situ (Schmalzried et 
al. 2000). Peri-implant bone microfractures and even pathological interface mobility can 
develop around already well-fixed implants as a result of too high loading. This 
secondary loss of stability stimulates bone remodeling (Takagi et al. 2001), and increases a 
risk for formation of fibrous interface around the implant. Fibrous tissue can further 
transform to synovial like-lining as a result of contact with synovial fluid (Part 2.2). 
Fibrous tissue formation is also promoted by the inert and passive nature of the metallic 
and polymeric materials used in joint replacements. Apart of the deteriorating effects of 
cyclic and erratic loading on development of fibrous interface, biomechanical loading 
affects also fluid flow and pressure in the lacuno-canalicular system. Detailed dynamic 
morphometric studies have shown high-turnover periprosthetic bone remodeling, 
immature bone formation and high density of osteocyte canaliculi in low-mineralized 
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areas around loosening implants (Takagi et al. 2001). This can expose cells in the 3D 
osteocytes-network to too high or low shear stress (drag force) leading to their apoptosis 
and aseptic necrosis. Osteocytes subjected to high pressures in peri-implant bone die a 
programmed cell death, apoptosis. Too low intracanalicular flow or obstruction of fluid 
inflow through surface pores by wear debris induces osteocyte apoptosis/bone necrosis. 
Taken together, patients should be strongly advised against extremely strenuous use of 
the implant to obtain good implant tolerance, but this is naturally also a patient and 
implant specific situation. 

3.2.3 The effect of gliding pairs, implants and fixation  

It is believed that the outcome of THA depends on optimal combination of patient, 
surgery and implant related factors. In this line, evidence-based implant surgery creates 
basic conditions for inducing an implant tolerance. Material and implant selections can 
also influence the conditions under which the tolerance to implant may develop. 
Regarding particle disease, key features are amount of particles together with their 
specific functional activity. Generally, ultra-high molecular weight polyethylene 
(UHMWPE) particles are considered more stimulating than ceramic particles. The amount 
of polyethylene wear debris has been significantly decreased by the development of 
highly cross-linked UHMWPE (HXLPE) even though concern on its specific functional 
activity remains. Wear rate was decreased by 50-95% by the 1st and 2nd generation HXLPE 
compared to conventional UHMWPE. As a result, the risk for osteolysis was diminished 
with 87% for the 1st generation of HXLPE liners compared to conventional UHMWPE 
liners (Kurtz et al. 2011).  
In ceramic-on-ceramic (CoC) couples, with significant decrease of both the linear (5-300x) 
and the volumetric wear (30-2000x) in comparison to the metal on UHMWPE bearings 
(MoP), the risk for severe osteolysis is even lower. In metal on metal (MoM) articulations the 
linear wear is 5-150x less and the volumetric wear 30-1000 x less than in the conventional 
MoP (Jin et al 2006) but concerns remain regarding induction of both the delayed-type 
hypersensitivity, e.g. Aseptic Lymphocyte-dominated Vasculitis-Associated Lesions 
(ALVAL). Taken together, if indeed a particle disease plays a significant role in loosening, 
these new materials might facilitate development of implant tolerance. 
Information on the effects of specific implant design on tolerance to implant is obtained 
from finite element modeling (FEM), simulation, case-control cohort and arthroplasty 
register studies. FEM, experimentation in silica, has been used for implant design and 
testing, implant biomechanics and implant-induced responses, e.g. bone remodeling and 
stress shielding, but few studies have applied FEM to estimate the longevity of different 
implant designs, i.e. the long-term tolerance to implants (Korhonen et al. 2005). Another 
method suitable for implant testing is computer-controlled simulation of real implants 
(Lappalainen et al. 2003). Randomized controlled clinical trials are the best way to 
evaluate specific implants in clinical practice. Unfortunately, they are rare. More frequent 
small and medium size observational cohort studies performed in a single center or 
geographical area can be biased. In that case, the most reliable information on the 
performance of different implants can be obtained using arthroplasty registers. Such 
registry studies also support the practice involving combination of antibiotics in the bone 
cement and systemically to decrease the risk of revision, i.e. improve implant tolerance 
(Engesaeter et al. 2003). Implant register studies can also be used to help to identify the 
ideal patient to maximize implant tolerance.  
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4. Local host response to prosthetic wear debris 

4.1 Hierarchy of immune reactions to prosthetic wear particles (Gallo) 

Aseptic loosening and osteolysis can be understood to be the result of chronic high-grade 
inflammatory disease induced by exposure of local tissue to massive quantities of 
prosthetic particles. For this reason predominantly investigated is the role of the immune 
system in its pathophysiology. Currently, there is a large body of evidence supporting the 
concept of the immune system acting major influence on particle disease. In this section, 
we will focus on the role of the different parts of the immune system in the process of 
aseptic loosening and osteolysis. 
Basically the immune system consists of two tightly associated segments: the innate immune 
system and the adaptive immune system. The former consists of a set of pattern-recognition 
receptors (PRRs) that evolved to recognize pathogen-associated molecular patterns 
(PAMPs), triggering rapid and robust response to invading pathogens following their 
recognition. The adaptive immune system evolved to produce a highly specific response to 
unique antigen presentation after innate instructions are conveyed to the second line of 
host-immunity associated in particular with T and B cells. A distinction should be made 
between at least the inflammatory TH1 response inducing and perpetuating inflammation via 
expression of IFN-┛, IL-2, TNF-alpha and activation of macrophages, NK cells, cytotoxic 
lymphocytes, and anti-inflammatory TH2 and TH3 responses associated characteristically with 
expression of IL-4, IL-5 and TGF-┚ and IL-10 cytokines, respectively (Matzinger 2007). From 
a functional point of view we can distinguish cells/pathways/molecules that trigger the immune 
response to wear debris and those that regulate host response, assuming the latter may play an 
important role in resolving inflammation and prevention of tissue damage.  
The immune response is triggered after recognition of special surface motifs on invading 
pathogen (PAMPs) by PRRs. Intact pathogens can be composed of a number of PAMPs 
which induce activation of multiple PRRs simultaneously and, vice versa, different PRRs 
can recognize the same PAMP (Kumar et al. 2011). Currently, there is growing evidence that 
activation of PRRs is an important part of host adverse reaction against prosthetic particles 
(Lahdeoja et al. 2010). This could be explained by adherence of immunoreactive substances 
(lipopolysaccharides, lipoteichoic acid, fragments of bacteria, components of complement 
etc.) on wear debris particles. Some researchers have demonstrated that i) PAMPs adhere to 
the particles; ii) adherent PAMPs increase significantly the biological response to the particles; iii) 
PAMPs do this by activating their PRRs (Greenfield et al. 2010). In addition, particles 
deliberated from THA are coated immediately with serum proteins creating a protein-particle 
complex that may result in a damage/danger-associated molecular pattern picture irrespective 
of endotoxin (Sun et al. 2003). Engagement of TLRs leads to activation of the NF-κ┚ signalling 
pathway with subsequent expression of pro-inflammatory cytokines, strongly boosting the 
immune response (Pearl et al. 2011). In the same way also other receptors (e.g. NOD-like 
receptor proteins) may participate in activation of the immune response to wear debris (St 
Pierre et al. 2010). Some of these are structurally involved in the cytosolic multi-protein 
complex known as the “inflammasome” which is considered a critical part of the 
inflammatory response. After appropriate stimulus, IL-1┚ and IL-18 convert from their 
inactive precursor molecules (pro-1┚ and pro-IL-18) into biologically active molecules that 
are then released from inflammasomes (Caicedo et al. 2009). From the clinical viewpoint, 
lipopolysaccharide has been detected in periprosthetic tissues without any other signs of 
infection in patients (Nalepka, Lee et al. 2006). In addition, some patients who underwent 
revision arthroplasty due to aseptic loosening had positive culture and/or PCR detected 
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bacteria (Dempsey et al. 2007). In one recent study, it was even found that the extension of 
osteolysis correlated with proportion of positive sonication cultures (Sierra et al. 2011). 
Participation of the adaptive immune system in host response to prosthetic wear debris is 
still a subject of controversy despite the fact that several reports have described lymphocytes 
in periprosthetic tissues, retrieved from patients with aseptically failed metal-on-metal 
(MoM) or non-MoM implants (Fujishiro et al. 2011; Ng et al. 2011). One recent study 
revealed increased serum concentration of cobalt and chromium in patients with MoM THA 
which positively correlated with increased proportion of HLA DR+ CD8+ T-cells in these 
patients (Hailer et al. 2011). In the same study, it was proposed that macrophages around 
THA could create haptenic metal ions in the context of self peptides (metal ion-altered self) 
as antigens in combination with MHC class II molecules, leading to T-cell priming. Weyand 
et al proposed antigen-recognition events when they characterised T cells in periprosthetic 
membranes (Weyand et al. 1998). They found identical T-cell receptor sequences suggesting 
identical antigen specificity and in addition, transcription of IL-2 and IFN-┛, indicating 
functional activity of at least some lymphocytes. Moreover, in this study, IFN-┛ 
transcription correlated with extension of bone loss. Sensitization to various heavy metals 
after THA is described elsewhere in this chapter (Part 4.5).      

4.2 Chemokines and cellular chemotaxis during the inflammatory response to wear 
particles from orthopaedic implants (Gibon, Goodman, Gallo) 

The biological reaction to polymers, ceramics and metallic wear particles is a non-specific 
foreign body and chronic inflammatory response. A type IV lymphocyte-driven hypersensitivity 
reaction involving a specific antigen has been found for a small percentage of cases with 
predominantly metal-on-metal bearing surfaces (Part 4.5). This section will focus on the 
inflammatory processes associated with wear particles from orthopaedic implants, 
emphasizing local and systemic cell signaling mediated by chemotactic cytokines called 
chemokines.  

4.2.1 The inflammatory reaction to wear particles 

Resident macrophages are amongst the first cells involved in particle-associated 

inflammation and initiate cell recruitment via the release of chemokines. Macrophage 

activation may occur with or without phagocytosis, by cell membrane contact with 

particles (Goldstein et al. 1975). Several receptors in the outer membrane of macrophages 

(e.g. CD11b, CD14, Toll-like Receptors and others) are involved in the activation of 

macrophages after contact with particulate debris. These receptors act through 

transmembrane proteins and different intracellular pathways and result in the release of 

cytokines, chemokines and other substances that induce cell recruitment. One of the most 

important intracellular pathways involved in signal transduction is the mitogen-activated 

protein kinase (MAP-Kinase) pathway. The MAP-kinase pathway then activates transcription 

factors such as the Nuclear Factor Kappa B (NFB), which activates a cluster of genes for 

the production of pro-inflammatory cytokines, chemokines and related substances (Tuan 

et al. 2008). Besides macrophages, other resident cells are involved in the inflammatory 

process including fibroblasts, mesenchymal stem cells, osteoblasts, lymphocytes and 

others. Retrieval studies demonstrated that the periprosthetic cells produced high levels 

of pro-inflammatory cytokines and other factors including TNF, IL-1, IL-6, M-CSF, 

RANKL, and others (Part 4.3). 
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4.2.2 Accumulation of chemokines 

In addition to pro-inflammatory cytokines, chemo-attractive cytokines are also produced by 
different cell types involved in the inflammatory response at the bone-implant interface 
including: polymorphonuclear leukocytes, monocytes, macrophages, osteoblasts, fibroblasts 
and synovial cells. Monocyte chemoattractant protein-1 (MCP-1) is one of the most 
abundantly released chemokines and is an immediate early stress-responsive factor (Tuan et 
al. 2008). Macrophage inhibitory protein-1 (MIP-1 or CCL2) and interleukin 8 (IL-8) are also 
involved in these events.  

MCP-1 is a C-C chemokine ( chemokine subfamily) and its gene location in humans is 
17q11.2. MCP-1 is primarily secreted by monocytes, macrophages and dendritic cells. With 
regards to bone, MCP-1 is also expressed by osteoblasts and osteoclasts. MCP-1 can bind to 
several receptors (CCR2, CCR4, CCR5) but binds preferentially to the CCR2. CCR2 has two 
isoforms: CCR2A and CCR2B; the expression of the different isoforms is restricted to 
specific cell types. Mononuclear cells and vascular smooth muscle cells express CCR2A 
whereas CCR2B is mainly expressed by monocytes and activated NK cells (Deshmane et al. 
2009). MCP-1 regulates the migration and infiltration of monocytes, dendritic cells, memory 
T-lymphocytes and NK cells. Production of MCP-1 is under the direct control of the 

transcription factor NFB. 
MIP-1 belongs to the same subfamily of chemokines as MCP-1 (the C-C chemokine family), 
and is secreted primarily by activated macrophages and T-lymphocytes. Other cells may also 

secrete MIP-1. MIP-1 has two main isoforms: MIP-1 (CCL3) and MIP-1 (CCL4). In mice, 
MIP-1 and MIP-1 are encoded by one gene each, however in humans, MIP-1 is encoded by 
at least three genes and MIP-1 by two, all located in chromosome 17 (Menten et al. 2002). 
Inducers of MIP-1 release are IL-1, IL-7, LPS and specific adhesion molecules (e.g. intercellular 
adhesion molecule-1, ICAM-1). High levels of MIP-1 have been observed when macrophages 
from retrieved periprosthetic tissues have been challenged with titanium alloy and 

polymethylmethacrylate particles (Nakashima et al. 1999). The release of MIP-1 increases the 
systemic recruitment of macrophages and has a paracrine effect enhancing IL-1 and IL-6 
release (Cook 1996; Menten et al. 2002). Although MCP-1 has a specific receptor (CCR2), MIP-1 
acts through several receptors (CCR1, CCR5), (Proudfoot 2002).  
Interleukin-8 (IL-8) is a member of the CXC chemokine family, and also has the designation 
CXCL8. It is an early stress responsive chemokine and the main cellular sources are: 
macrophages, endothelial cells, epithelial cells, and cells of the mesenchymal lineage such as 
mesenchymal stem cells and osteoblasts. IL-8 is a potent chemokine that induces the 
chemotaxis of neutrophils and monocytes/macrophages, and increases the mobility of 
osteoclasts (Baggiolini and Clark-Lewis 1992). Il-8 is also an angiogenic factor. IL-8 does not 
have a specific receptor but acts through the coupled G protein receptors CXCR1 and 

CXCR2, which are receptors for other chemokines (e.g. GCP-2, NAP-2, Gro- and others), 
(Proudfoot 2002). When osteoblasts are challenged with phagocytosable titanium particles, 
the IL-8 peak in gene expression occurs within 1-2 hours after particle exposure (Fritz et al. 
2002). The biological mechanism of IL-8 expression involves first a protein tyrosine 
phosphorylation after contact with Ti particles and then activation of the pro-inflammatory 

NF-B through two subunits, p50 (NF-B1) and p65 (RelA) to bind the IL-8 gene promoter. 

4.2.3 Accumulation of cells 

Under the influence of chemotactic and other immunoregulatory signals, many different 
inflammatory and reparative cells migrate through local tissues regionally and systemically 
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through the blood stream to the areas of particle generation. Recent murine studies 
involving continuous intra-osseous infusion of ultra high molecular weight polyethylene 
(UHMWPE) particles have demonstrated an increase in the systemic trafficking of reporter 
macrophages to the particle infusion site using non-invasive imaging (bioluminescence) and 
immunofluorescence microscopy (Ren et al. 2010). Furthermore, a decrease in bone mineral 
density has been observed within the UHMWPE particle-infused femora (Ren et al. 2011). 
This suggests that wear particles stimulate a systemic response, mediated by chemokines 
released locally. Recent unpublished studies in our laboratory have demonstrated that 
inhibition of the MCP-1-CCR2 chemokine-receptor axis can mitigate this response, including 
reversing in part, particle-induced bone loss. 
 

 

Fig. 3. Biologic reaction induced by orthopaedic wear particles on host cells; note the 
complex interaction of different cell types and factors to the presence of wear particles. 
Chemokines play a central role in cell recruitment. This diagram does not include the type 4 
immune reaction to metallic wear particles.  
IL = interleukin, TNF = tumor necrosis factor , GM-CSF = granulocyte macrophage colony-
stimulating factor, MCP-1 = monocyte chemoattractant protein-1, MIP-1 = macrophage inhibitory 
protein-1, ROS = reactive oxygen species, NO = nitric oxide, VEGF = vascular endothelial growth 
factor, NF-B = nuclear factor  B, IFN = interferon, RANKL = receptor activator of nuclear factor  
B ligand, TLR = toll-like receptor, FGF = fibroblast growth factor, OPG = osteoprotegerin, TGF = 
transforming growth factor , PGE2 = prostaglandin E2 
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After systemic and local cell trafficking to the inflammatory site, mononuclear macrophages 
may undergo a process called macrophage fusion. This results in polykaryons known as 
multinucleated “foreign body” giant cells which can be small (and contain 3-6 nuclei) or 
large (7-50 nuclei). Macrophage fusion is complex and requires the presence of specific 
cytokines and other factors (Part 4.4). The presence of foreign body giant cells has been 
widely demonstrated within the bone-implant interface (Goodman et al. 1989). 
Multinucleated giant cells have the capability to strongly express transforming growth 
factor- (TGF-) as shown by Al-Saffar et al in their tissue retrieval study (Al-Saffar and 
Revell 2000). TGF- is a key factor involved in angiogenesis, neovascularization and has 
been shown to impact both osteoclastic bone resorption and osteoclast-like cell growth and 
differentiation (Takahashi et al. 1986).  
In vitro studies using murine bone marrow macrophages have shown that 
polymethylmethacrylate (PMMA) particles stimulate both RANKL expression, increase the 
number of osteoclasts and induce the formation of multinucleated giant cells (Clohisy et al. 
2003). The authors also observed that PMMA particles activate the NF-B and c-jun/AP-1 
transcription factors, both of which mediate the osteoclastogenic effect of RANKL. Thus, 
after contact with orthopaedic wear debris, resident macrophages become activated and release pro-
inflammatory cytokines, chemokines and other factors. MCP-1, MIP-1 and IL-8 release evokes the 
systemic recruitment of macrophages to the site of inflammation. Macrophage accumulation 
maintains the inflammatory process with release of pro-inflammatory cytokines that have 
paracrine and autocrine functions. Macrophage fusion induces the local release of TGF- by 
multinucleated foreign body giant cells that facilitates the growth and differentiation of 
osteoclasts. Further cytokine release (TNF-, IL-1, RANKL and others) by resident 
macrophages, fibroblasts, and cells of the osteoprogenitor cell line maintains a heightened 
inflammatory state and promotes the growth and differentiation of osteoclasts. These 
interlinked pathways are summarized in figure 3. 

4.3 Cytokines and orchestrating of local adverse reaction to prosthetic particles 
(Pajarinen, Takakubo, Mackiewicz, Takagi, Konttinen) 
Cytokines are small (15-25 kd) protein or glycoprotein messenger molecules that mediate 
intercellular (or even intracellular) communication and modulate immune reactions. They 
are produced, to some extent, by virtually all types of cells but by cells of the epithelial and 
hematopoietic origin as well as the cells of the immune system in particular. Typically 
cytokines are, after cell activation, secreted as soluble mediators into the extracellular space 
where they exert their function by binding to their specific high-affinity receptors located on 
the target cell membrane. Cytokine binding to its receptors induces receptor conformational 
changes and receptor dimerization or polymerization, binding of co-receptors in some 
instances and binding of adaptor proteins to the cytoplasmic tails, which leads to the 
activation of intracellular signalling cascades, activation or inactivation of specific 
transcriptional factors and finally up- or down regulation of gene expression. Some 
cytokines are not secreted but act in an intracrine (inside the cell) or juxtacrine (bound to cell 
membrane and requiring a direct cell-to-cell contact) mode of action while others are 
confined to the extracellular matrix (ECM) and released only when ECM proteins are 
degraded or damaged. 
Cytokines control a very wide variety of different cell functions including cell growth, 
differentiation, migration, activation and survival. They are essentially involved into the 
development of blood cells (hematopoiesis) and not only in to the development and 
coordination of innate immune reaction and initial acute inflammation reaction but also to 
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the activation and proper polarization of adaptive immunity, development of chronic 
inflammation as well as tissue regeneration and healing.  

4.3.1 Functional classification of cytokines 

Currently already more than 200 different cytokines are known. Cytokines can be classified 
into several broad categories by their functional properties. Such classification is at best a 
simplification as the biological functions of specific cytokines vary considerably depending 
on the context. For example, cell type and cells activation state as well as the presence of 
other activating or inhibiting signals derived from e.g. cell-to-cell and cell-to-ECM contacts 
and other cytokines can alter the final outcome of the cytokine signalling. This phenomenon 
is known as cytokine pleiotropy: one cytokine typically has multiple functions. Considerable 
redundancy exists in cytokine signaling, different cytokines can activate very similar 
intracellular signalling pathways and transcription factors and thus have very similar effects 
on the target cell. Cytokines can have synergy so that they enhance each other’s signalling 
and the net sum of the effect is far greater than their additive effects. As cytokines typically 
regulate the secretion of other cytokines and the expression of each other’s receptors, a 
complex and integrated network of cytokine functions is formed. 
At the beginning of the inflammation reaction resident tissue macrophages are activated by 
exo- or endogenous danger signals recognized by different pattern recognition receptors 
(e.g. TLRs) to produce pro-inflammatory cytokines e.g. tumor necrosis factor alpha (TNF┙), Il-
1┚ and  IL-6. These cytokines activate and enhance the innate immune response, induce the 
secretion of anti-microbial molecules and other cytokines that refine the immune response, 
evoke systemic inflammatory response discussed above and importantly induce the 
expression of adhesion molecules in local microvascular beds in the process known as 
endothelial activation. Activated endothelium of post-capillary venules expresses selectin 
and integrin ligands, namely adhesion molecules (e.g. glycam-1, VCAM-1, ICAM-1), to 
which circulating and marginalized leukocytes effectively stick (capture and rolling), adhere 
and finally transmigrate from vascular compartment into the inflamed tissue. In unison with 
the pro-inflammatory cytokine production, macrophages, activated endothelial cells and 
other cells start to produce chemokines that further guide and activate transmigrated 
leukocytes to the site of inflammation along their increasing concentration gradient. The 
chemokines are discussed in more detail in part 4.2 of this chapter. Also interferons are 
secreted by the cells of the innate immunity at the early stages of innate immune reaction. 
They are traditionally classified in two groups having very distinct functions. Type I 
interferons (”anti-viral interferons”), including IFN┙ (13 subtypes), IFN┚ and IFNω (3 
subtypes), are produced by macrophages after e.g. TLR recognition of viral structures 
(double stranded RNA or DNA). IFN┛, the only member of type II interferons (“immune 
interferon”), is secreted to some extend by macrophages and in greater magnitude by 
activated Th1 and NK-cells and is an important activating signal for macrophages which 
enhances their ability to secrete pro-inflammatory cytokines and kill phagocytosed bacteria.  
The initial strong pro-inflammatory response must be well regulated and typically pro-
inflammatory cytokines are rapidly degraded, their actions are inhibited by soluble or 
solubilised receptor proteins (e.g. IL-1RA) and further counterbalanced by production of 
anti-inflammatory cytokines e.g. IL-4, IL-10, transforming growth factor-┚ (TGF-┚), which 
efficiently inhibit the production of pro-inflammatory cytokines and function of innate 
immunity. After the initial inflammatory reaction is resolved the tissue regenerative 
processes are rapidly engaged. Growth factors represent a diverse group of cytokines that 
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regulate these tissue regenerative processes by modulating the growth and differentiation, 
of various cell types and tissues. Colony stimulating factors (CSF) typically control the 
myeloid development of monocytes and granulocytes, while epidermal growth factor (EGF), 
vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) are secreted 
by macrophages and fibroblasts during regeneration of various tissues and they control e.g. 
formation of granulation tissue. 
If the initial activation of innate immunity does not rapidly lead to the resolution of 
inflammation, the adaptive immune system is gradually activated by in particular 
professional antigen capturing, processing and presenting dendritic cells and macrophages 
that present MHC II-bound antigenic epitopes to the T-cell receptors (TCRs) of naïve CD4+ 
T-helper (Th) cells. The cytokine milieu that accompanies the antigen presentation process 
crucially determines the nature of the developing immune response (Th type 1, 2, 17, Treg). It is 
in the field of bone biology useful to distinguish a group of cytokines that control the 
formation, activation and survival of bone resorbing cells, osteoclasts. The complete list of 
cytokines that have been shown to support osteoclastogenesis or their bone resorptive activity 
is quite extensive and includes e.g. TNF┙, IL-1, IL-6, IL-7, macrophage-CSF (M-CSF), IL-11,  
IL-17, MIP-1┙/┚, IFN-┛-induced protein-10 (IP-10) and monokine induced by IFN-┛ (MIG), 
bone (or body) morphogenic proteins 2 and 7 (BMP2, 7) and VEGF among others. Cytokines 
that inhibit osteoclastogenesis include IFN┛, IFN┚, IL-4, IL-10, IL-13 and IL-18. Yet some 
cytokines play a dual role:  low concentrations of TGF-┚ stimulate osteoclast formation and 
high concentrations inhibit it. However, none of the above-mentioned cytokines seems to be 
absolutely necessary for osteoclast development (Theill et al. 2002). The most important 
cytokine system controlling the osteoclast formation and function is the RANKL/ 
RANK/OPG system (Boyle et al. 2003). Mesenchymal cells, e.g. osteoblasts, mesenchymal 
stromal cells and fibroblasts as well as activated T cells tightly control osteoclastogenesis by 
producing receptor activator of nuclear factor kappa B ligand RANKL, which is produced in 
both cell membrane-bound and solubilized forms. Binding of RANKL to its receptor RANK 
expressed on osteoclast progenitors or macrophages in the presence of M-CSF, leads to cell 
fusion and formation of mature bone resorbing osteoclasts. In addition mesencymal cells 
produce osteoprotegerin (OPG) which is a soluble decoy receptor for RANKL and acts to 
limit and regulate its function. A high RANKL/OPG ratio is thus considered to drive 
osteoclastogenesis. RANKL/RANK/OPG system seems to represent the final common 
pathway in osteoclastogenesis, and many of the above-mentioned cytokines that drive or 
inhibit osteoclastogensis act by regulating RANKL or OPG levels. In the presence of low 
levels of M-CSF, RANKL seems to both sufficient and necessary for the complete 
differentiation of osteoclast precursors into mature osteoclasts.  

4.3.2 Cytokines in aseptic loosening 

As the monocyte/macrophage and foreign body giant cells (FBGCs) are by far the most 
dominant cell type in the periprosthetic tissue, the wear particle activated macrophage has 
long been considered to play a pivotal role in the development of aseptic loosening.  
Several studies over the years have demonstrated that monocyte/macrophages challenged 
in vitro with wear particles are activated to produce a wide variety of pro-inflammatory 
cytokines, chemokines and growth factors, including TNF┙, IL-1┚, IL-6, IL-8, MCP-1 and 
MIP-1┙/┚, VEGF, M-CSF, GM-CSF and even more so if particles are contaminated with 
bacterial products (Holt et al. 2007; Purdue et al. 2007; Goodman and Ma 2010). Also the 
shape, size, number, and biomaterial composition of wear particles seem to have an effect 
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on the quantity and quality of the cytokines produced. This wear particle induced 
macrophage activation is possibly mediated by various types of cell surface pattern 
recognition receptors e.g. Toll-like receptors (Takagi et al. 2007; Tamaki et al. 2009) and 
likely involves the activation and action of transcription factor NF-kB (Lahdeoja et al. 2010; 
Pearl et al. 2011).  
The mere wear particle stimulation of pure monocyte/macrophage cultures is not sufficient 
to drive osteoclastogeneis or foreign body giant cell formation, most likely due to lack of 
RANKL signalling. Further in vitro studies using other relevant cell types of the 
periprosthetic tissue have demonstrated that, to some extent, wear particles as such and 
especially pro-inflammatory cytokines effectively up-regulate RANKL production from 
periprosthetic tissue fibroblasts and osteoblasts as well as suppress osteoblast formation and 
function (Vermes et al. 2001; Mandelin et al. 2005a).  
Consistent with in vitro findings, numerous studies of the explanted periprosthetic tissues 
and pseudosynovial fluid have demonstrated increased production of vast array pro-
inflammatory cytokines, chemokines and growth factors including e.g. TNF┙, IL-1┚, IL-6, 
IL-8, M-CSF, GM-CSF, MCP-1, MIP-1┙ as well as increased RANKL/OPG ratio favouring 
osteoclast formation (Mandelin et al. 2003; Holt et al. 2007; Purdue et al. 2007; Goodman and 
Ma 2010). Pseudosynovial fluid from aseptically loosened implants effectively induces 
formation of osteoclasts in cell culture conditions and OPG diminished this effect (Kim et al. 
2001; Mandelin et al. 2005b). It should be noted however, that there is some discrepancy in 
these findings and, for example, the strong pro-inflammatory cytokines TNF┙ and IL-1┚ are 
not detected so consistently as e.g. IL-6, IL-8 or MCP-1, MIP-1┙/┚ or RANKL possibly 
reflecting individual variations or different stages of the disease progression (Purdue et al. 
2007). Because systemic inflammation reaction (e.g. fever, fatigue, cachexia) is not typically 
observed in patients with aseptic osteolysis, the observed low levels of TNF┙ and IL-1 might 
actually represent poorly understood aspects of particle induced chronic inflammation. 
Studies conducted in animal models have further elaborated the role of pro-inflammatory 
cytokines and RANKL in the aseptic osteolysis. Several of these models have shown that 
implanted wear particles of various nature cause inflammation and increase RANKL/OPG 
ratio and osteolysis (Purdue et al. 2007). This reaction can be prevented or reduced by 
inhibiting TNF┙ signalling by using TNF┙ neutralizing antibody or by deleting TNF 
receptor (Childs et al. 2001). Similarly blocking of RANK signalling by RANK antagonist or 
OPG, or using mice genetically lacking RANK prevented experimental osteolysis in murine 
model of particle induced osteolysis (Childs et al. 2002; Ulrich-Vinther et al. 2002). 
Contradicting in vivo findings do also exist e.g. Taki et al. could not observe decrease in 
osteolysis in IL-1r and IL-6 or TNF double knock-out mice but concluded that osteolysis was 
likely mediated by other pro-inflammatory cytokines (Taki et al. 2007). 
Taken together, following speculations can be made based on the detected cytokine profile 
of periprosthetic tissue. First, the definite majority of the cytokines detected are pro-
inflammatory cytokines or chemokines secreted primary by cells of the innate immunity, 
which supports the essential role of activated macrophages in the process of aseptic 
loosening. Second, RANKL seems to be the most important end-point cytokine driving the 
osteoclast formation and loosening. Third, if only the cytokine profile of peri-implant tissues 
is considered, the role of adaptive immunity seems unlikely as both Th1 and Th2 signature 
and effector cytokines IFN┛ and IL-4 are not generally detected from the peri-implant 
tissues. Furthermore both IFN┛ and IL-4 effectively suppress the formation of osteoclasts. In 
this regard the possible role of Th 17 cells in the aseptic osteolysis seems an interesting line 
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of further research as their signature cytokine IL-17 has been shown to favour 
osteoclastogenesis. Fourth, the nature of FBGCs remains somewhat elusive as 
morphologically sound FBGCs can be made in cell culture conditions using long term IL-4 
stimulation, but as stated the IL-4 is not present in the periprosthetic tissue in any 
considerable amounts. 
Based on the in vitro cell stimulation experiments and explanted tissue analysis, a following 
sequence of events can be postulated: wear particles activate macrophages, even more so if 
particles are coated by microbial products or alarmins. TLRs and other pattern recognition 
receptors of the innate immunity might mediate this wear particle induced cell activation. 
Activated macrophages produce pro-inflammatory chemokines, cytokines and growth 
factors which cause, via local endothelial activation and chemotaxis, further recruitment of 
monocytes and osteoclast precursors to the periprosthetic tissue. Pro-inflammatory 
cytokines, and to some extend also wear particles directly, drive the production of RANKL 
from mesenchymal cells and at the same time suppress the production of OPG and bone 
formation. Together with the pro-inflammatory cytokines they create an environment which 
favours ostoclastogenesis, bone resorption and finally prosthesis loosening. As the 
RANK/RANKL/OPG system seems represent the final common pathway in the pro-
inflammatory cytokine mediated osteolysis, inhibition of RANKL might seem as a rational 
means to prevent aseptic osteolysis. 

4.4 Key cell players – macrophages, fibroblasts, lymphocytes, osteoblasts, 
osteoclasts (Gallo, Goodman) 

Histological and immunohistochemical studies of retrieved tissues have shown that when 
loosening is associated with osteolysis, the cellular profile is dependent on the method of 
prosthesis fixation (cemented or uncemented). Indeed, in the cemented group, tissue was 
more plentiful and often composed of highly vascularized fibrous tissue with a 
preponderance of macrophages and, to a lesser degree, T lymphocytes. With uncemented 
implants, tissue was less abundant and less cellular and more fibrous in nature. In addition 
to large numbers of fibroblasts, macrophages were also abundant but with increased 
numbers of all T-lymphocyte subgroups (Goodman et al. 1998).  

Macrophages 

Macrophages comprise a heterogeneous group of cells that play an important role in both the 
activation of the immune response and tissue homeostasis. They are derived from monocytes 
which arise from myeloid progenitor cells in the bone marrow. After maturation in bone marrow, 
monocytes are released into the circulation, then enter the tissues and differentiate into tissue 
macrophages (M0) that can survive for several months. Here, they can be activated by 
microbial/non-microbial agents (proinflammatory M1 macrophage activation), by IL-4, IL-13 
etc. produced locally by mast cells and/or TREG lymphocytes (M2 antiinflammatory tissue-
remodelling macrophages), or by other signals (M2-like immunoregulatory macrophages). 
Suppression of cytokine signalling 1 (SOCS1) is a key determinant of differential 
macrophage activation and function influencing the overall macrophage balance in tissues 
together with other factors (Ma et al. 2003; Whyte et al. 2011).  
Macrophages are considered the most potent phagocytic cells in tissues around the THA and 
there are believed to be able to phagocytise even non-opsonized particles, e.g. polyethylene, 
metal or polymethylmethacrylate. After phagocytosis of the wear particles (the “fuel of the 
particle disease”), the macrophages have to become activated to produce pro-inflammatory 
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cytokines and orchestrate their microenvironment towards increased osteoclast 
differentiation and osteolysis. The mechanism by which macrophages recognize particles 
and become activated as a result is not fully understood. In this context it is interesting to 
speculate if perhaps excessive biomechanical loading, mast cell activation and/or tissue 
necrosis can release alarmins which could initiate expression of polarizing cytokines. 
Another option is that microbes or microbe-derived pathogen-associated molecular patterns 
could provide the danger signal initiating polarization of M0 to other macrophage subtypes 
(Tamaki et al. 2009). In fact, early in the adaptation process, tissue macrophages exhibit 
traits specific for the tissue in which they reside and, in the resolution phase of 
inflammation, they induce original tissue repair or fibrosis. It has been postulated that 
during initial or middle phases of tissue response on wear particle load M1 macrophage 
activation pattern could play a key role while end-stage of aseptic loosening could be 
associated with alternatively activated macrophages expressing predominantly chemokines 
such as CHIT1 and CCL18 (Koulouvaris et al. 2008).  
Macrophages have their own weak bone-resorptive capacity but more importantly they are 
the cell reservoir for the generation of multinucleated giant cells (MGCs). Of these the 
multinuclear bone resorbing osteoclast derived from M0 macrophages is the most important 
consumer of bone. Induction of monocyte/macrophage-derived multinucleated giant cells 
has been demonstrated in response to hematopoietic growth factors (e.g. IL-3, granulocyte 
macrophage colony stimulating factor, GM-CSF), and IL-4. The role of adhesion molecules 
in polykaryon cell formation has also been reported, and mainly involves intercellular 
adhesion molecule-1 (ICAM-1/CD54) and the receptor CR3 (CD11b/CD18) expressed by 
multinucleated giant cells (Anderson et al. 2008). Furthermore, immunohistochemical 
analysis of tissues retrieved from aseptic loosened total hip and knee replacements has 
shown high levels of ICAM-1 and its receptor CD11b expressed by giant cells and 
phagocytic cells containing metal and polyethylene particles. 

Fibroblasts/ Fibrocytes 

Fibrocytes are mesenchymal cells that arise from monocyte precursors derived from blood. They 
express features of both macrophages and fibroblasts dependent on local factors 
participating in acute response to injury/surgery and also play an important role in 
regulation/ resolution of chronic inflammation (Reilkoff et al. 2011). Their increased 
occurrence in periprosthetic tissues long after the healing phase could be associated with 
disturbance of local tissue homeostasis.  
About 30% of periprosthetic membrane is composed of fibroblasts and these cells exhibit a 
very high proliferation rate pointing on their activation state (Koreny et al. 2006). Fibroblasts 
are tissue resident cells that have the capacity to synthesize and remodel extracellular 
matrix. In this  way they create the local tissue architecture and also develop a milieu in 
which particular homeostatic regulation (e.g. inflammation, repair) can occur (Buckley 
2011). Thus, they could significantly influence  the fate of  a  prosthesis because they 
govern the switch to resolving  postoperative inflammation and formation of fibrous 
capsule (repair) during the initial postsurgery period (Anderson 2009). In fact, fibroblasts 
and fibrocytes residing in surface layers of the periprosthetic capsule are the first cell 
types that come into contact with prosthetic particles. Later, a series of interactions 
between immune cells (esp. macrophages) and fibroblasts could determine the overall 
adaptative capacity of periprosthetic tissues for wear debris. For this reason, fibroblasts in 
concert with other cells greatly influence the grade of periprosthetic inflammation. 

www.intechopen.com



 
Recent Advances in Arthroplasty 338 

Aberrant expression of adhesion molecules, chemokines, cytokines, and their receptors 
could increase the inflammatory status, and vice-versa.  

Lymphocytes 

Local perivascular infiltrates of lymphocytes and even diffuse lymphocytes have been 
identified in specimens of periprosthetic tissue from both MoM and non-MoM implants 
(Fujishiro et al. 2011). Lymphocytes are a kind of leukocyte circulating in the blood. Precursors of 
both T and B cells are cloned in bone marrow but T cells require in addition, maturation in 
the thymus. The surface of each T cell displays thousands of identical T cell receptors and 
according to the presence of one or the other of two surface glycoproteins, they are 
designated as CD4 and CD8 T lymphocytes. The recruitment of lymphocytes into peripheral 
tissues where there is inflammation and/or damage is mediated by chemokines and 
adhesion molecules. In tissues, each B and T cell develops a specific response for a particular 
antigen interplaying complexly with innate immunity. As a result, different classes of 
pathogens stimulate differentiation of CD4+ T cells into effector T cells (Th1, Th2, Th17 
subsets). The aim is to induce the best response to a particular danger signal without vast 
tissue damage. Therefore, an important role is played by the activity of regulatory T (Treg) 
cells which suppress inappropriate adaptive immune response via several regulatory 
mechanisms (e.g. TGF-┚, IL-10).  
T lymphocytes are key players in the process of local and systemic bone loss associated with 
inflammation (Djaafar et al. 2010). Importantly, direct cell-to-cell contact between activated 
T cells and pre-osteoclasts is critical for their maturation in osteoclasts via RANKL and other 
pro-inflammatory cytokines pathways. Natural killer cells (lymphocytes of the innate 
immune system) have been shown to be a principal tissue-infiltrating lymphocyte subset in 
patients with particle-mediated inflammation (Huss et al. 2010). However, despite the 
above-mentioned consequences, the role of the specific immune system in particle disease 
remains controversial. 

Osteoblasts 

The osteoblast is a mesenchymal cell with a primary role in bone formation and remodelling. To do 
this, they come in contact with other cell groups of different origins (including osteoclasts, 
macrophages, lymphocytes, bone marrow cells) and synthesize a variety of cytokines and 
chemokines. Such interactions likely play an important role under both physiologic and 
pathological conditions.  
Given the problem is increased bone resorption around the implant, the interplay between 
osteoblasts and other cell groups likely creates an environment favouring increased 
osteoclast maturation and/or suppressed osteoblast activity. Investigated have been the 
following possible explanations. First, some types of prosthetic particles could be toxic to 
osteoprogenitor cells leading to slowing of their maturation. Second, wear debris could 
suppress the function of mature osteoblasts inhibiting their osteogenic capacity. Third, 
osteoblasts could phagocytose prosthetic particles and express pro-inflammatory and pro-
osteoclastogenic molecules on their surface, contributing in this way to the severity of bone 
resorption. The same can be achieved by chronic inflammatory microenvironment that up-
regulates osteoblast synthesis of pro-osteoclastogenic molecules (Granchi et al. 2005; Fujii et 
al. 2011). Osteoblasts can contribute to the predominance of bone resorption at implant-bone 
interface also by specific interaction between them and T cells. Osteoblasts can express  
immunoreactive structures on their surfaces (superantigens) which directly stimulate T cells 
in their surroundings (Stanley et al. 2006). Activated T cells could express RANKL and M-
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CSF, required for maturation of osteoclasts and also for formation of other giant cells having 
potentially important implications for periprosthetic osteolysis and aseptic loosening.  

Osteoclasts 

Osteoclasts are multinucleated bone-resorbing cells that together with osteoblasts, play a 
pivotal role in bone homeostasis and bone remodeling. Osteoclast precursors derive from bone 
marrow as M0 macrophages circulating in blood until penetrating tissues and binding to the 
bone surface utilizing cell-specific signalling pathways. The mechanism of recognition of a 
particular place on the bone surface is not known. On the other hand, the integrins 
mediating the bonding of pre-osteoclast to the bone site are well described (e.g. ┙v┚3). At the 
bone site, pre-osteoclasts fuse into multinucleated cells under the influence of fusion factors 
(e.g. dendritic cell-specific transmembrane protein; DC-STAMP) and then maturate in a  
particular milieu with the help at least of macrophage colony-stimulating factor (M-CSF) 
and receptor activator of nuclear factor kappa B ligand (RANKL), (Fig. 3). TNF-┙ and IL-1 
potentiate this process, whereas a soluble RANKL neutralizer osteoprotegerin (OPG) 
inhibits it (Anderson et al. 2008). Indeed, RANKL/OPG ratio is considered a key regulator 
of osteoclastogenesis although in vivo, the RANKL-RANK interaction may occur in a direct 
cell-cell contact, e.g. between mesenchymal stromal cells and osteoclast progenitors or 
osteoblasts and pre-osteoclasts. A few giant osteoclasts form the cutting cone at basic 
multicellular units (BMU) in osteons (compact bone) and hemi-osteons (trabecular bone) 
that undergo resorption over a few weeks. The resorption space (lacuna) in healthy bone is 
filled in a few months by the closing cone composed of osteoblasts. However, under 
pathological conditions such as particle-mediated inflammation, the distortion of the 
coupling mechanism prevents closure of cone by osteoblasts. Hence, increased osteoclast 
bone resorption along with other mechanisms continues to create larger bone defects.  

4.5 Contribution of allergic and other metal ion mediated responses to loosening of a 
total hip arthroplasty (Thyssen, Schalock) 

Allergy and sensitization are frequently used terms, but their definitions should be clarified. 
Sensitization may be defined as “the process in which exposure to an antigen results in the 
development of hypersensitivity” whereas a definition of allergy could be “an altered body 
reaction, usually hypersensitivity, as a response to exposure to a specific substance”. It is 
generally accepted that all metal prostheses release metal debris following wear and 
corrosion. This has been shown by measuring significantly elevated level of metal ions in 
hip arthroplasty patients; e.g capsular and periprosthetic tissues, the liver, spleen and 
lymph nodes, serum and urine (Hallab and Jacobs 2009). Metal ions may potentially activate 
the immune system, a response that is mainly adaptive rather than innate (Hallab et al. 
2008). Typically, large particulate wear debris particles (more than 150 nm to 10 μm) are 
phagocytosed by cells including macrophages, which present antigens to circulating T-
lymphocytes resulting in delayed type hypersensitivity reactions (Hallab and Jacobs 2009). 
Allergic complications following insertion of metallic orthopaedic implants are plenty and 
summarized in table 1. In this section, we will discuss the possible association between 
metal allergy and loosening of hip arthroplasties.  
Immune reactions described adjacent to metal implants include T-cell mediated type IV 
reactions but likely are multifactorial. Peri-implant reactions seem to be Th1 dominant. Hence, 
increased levels of IFN-┛ and IL-6 in metal hypersensitive joint arthroplasty patients (Hallab 
et al. 2008) as well as low IFN-┛ and elevated levels of IL-17 in nickel allergic patients with 

www.intechopen.com



 
Recent Advances in Arthroplasty 340 

symptomatic joint implants but not in Ni allergic patients with well-functioning joint 
implants (Summer et al. 2010) have been reported. Tissues near metal devices in those with 
metal hypersensitivity may have elevated immune cells/markers including: CD3þ T-
lymphocytes, CD4þ cells, CD11cþ macrophages/dendritic cells, and cells with abundant 
MHC class II (HLA-DR) expression (dendritic cells), (Cadosch et al. 2009). Foreign body 
giant cell formation is often noted when phagocytosis of foreign particles by macrophages, 
including metals. Ingesting macrophages then secrete the proinflammatory cytokines TNF-
┙, IL-6 and IL1-┙ and –┚ (Cadosch et al. 2009). At high concentrations, Ti and V cause 
production of superoxide anions in neutrophils and nickel ions break down neutrophil cell 
membranes at high levels (Kumazawa et al. 2002).  
A novel mechanism for aseptic loosening of metal implants was suggested recently 

(Cadosch et al. 2010a). Osteoclasts mature and grow on titanium metals, leading to 

degradation, uptake and eventual release of the metal ions by the osteoclasts. This might 

explain increases in metal ion in systemic circulation, increased recruitment of osteoclast 

precursors via synthesis of specific chemokines, and also it can contribute to osteoclast 

differentiation. CCL17/TARC, CCL22/MDC, RANK-L, M-CSF and pro-inflammatory 

cytokines (CCR4) are elevated in the peri-implant environment (Cadosch et al. 2010b). This 

leads to loosening of the device as supporting surrounding bone is resorbed. In addition to 

being present in joint loosening, CCR4 is involved in the inflammatory reaction in cutaneous 

allergic contact dermatitis reactions (Vocanson et al. 2009). The link between cutaneous 

dermatitis and CCR4 is not proven, but is an area for further inquiry. While this evidence 

specifically address Ti metal, these same mechanisms could be relevant for other metal ions 

as well. Below, a description of the epidemiology of metal allergy and recommendation for 

clinical practice will be provided. 

 

Reactions  

  

Cutaneous: Extra-cutaneous: 

Localized allergic (contact) dermatitis Implant loosening  

Systemic allergic (contact) dermatitis Pain 

Urticaria Swelling/tumor formation 

Bullous reactions Chronic inflammation 

Vasculitis   

Impaired wound healing  

Table 1. Selected clinical manifestations of delayed type hypersensitivity reactions 

4.5.1 Epidemiology 

Metal allergy, as defined by a positive patch reaction to a given metal, is frequent in the 

general population since up to 17% of adult women and 3% of adult men are nickel 

sensitized (Thyssen et al. 2007). Chromium and cobalt allergy are less frequent and occur in 

about 1-2%. Other prevalent causes of metal allergy include gold and palladium resulting in 

positive patch test reactions in about 10% of dermatitis patients albeit these are rarely 

clinically relevant (Faurschou et al. 2011). The prevalence of other metals, e.g. titanium, 

platinum, molybdenum, manganese and other has not yet been evaluated in general 

populations and are general infrequent in dermatitis patients.  
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It has often been debated whether metal allergy increases the risk of developing delayed 
type hypersensitivity reactions, e.g. loosening of THA. The literature was recently reviewed 
and it was concluded that metal allergy might in a minority increase the risk of 
complications caused by a delayed type hypersensitivity reaction (Thyssen et al. 2011a). 
Also, we do not know how to identify the subgroups of metal contact allergic patients with 
a potentially increased risk of complications following insertion of a metal implant. 
However, it seems to be certain that insertion of metal bearings increase the prevalence of 
metal allergy as a review showed it was 25% among patients with well-functioning hip 
arthroplasties and 60% among patients with a failed or a poorly functioning implants 
(Hallab et al. 2001); considerably higher frequencies than general population estimates 
(Thyssen et al. 2007). Despite the higher prevalence in the latter patient group, it remains 
unknown whether the higher prevalence is caused by implant loosening or whether metal 
hypersensitivity results in loosening.  

4.5.2 Metal exposure 

In addition to metallic devices and prostheses, metal exposure is also related to intake of 
food and water, dental work, tattooing, and prolonged skin contact with metal objects. 
These exposures may all result in metal sensitization although oral intake sometimes may 
lead to tolerance. Oral intake of food and water as well as implantation seems rarely to 
result in allergic complications or clinical disease. However, skin contact with metal objects 
e.g. jewellery often results in skin sensitization and dermatitis at the site of skin contact. 
Several field studies have recently demonstrated that nickel release in concentrations that 
result in sensitization and dermatitis remains common in Europe and the United States 
(Thyssen and Menne 2010; Thyssen et al. 2011b).  

4.5.3 Patch testing 

Patch testing is widely used to establish a diagnosis of delayed type hypersensitivity to 

metals. The reproducibility of the patch test is high but allergen dependent (Brasch et al. 

1994). Patch tests are typically applied to the upper back and occluded for 48 hr. Readings 

should be performed at least on day 3 or 4 and if possible on more than one occasion 

(Wahlberg 2006). Patch test studies have suggested that 24-34.5% of positive patch test 

reactions potentially are missed when readings are not performed beyond day 2 (Uter et al. 

1996). Ready-to-use test systems such as the Thin-layer Rapid Use Epicutaneous (TRUE) 

test® generally have a good concordance with conventional patch test systems using e.g. 

Finn Chambers®, except for cobalt (Lazarov et al. 2007). Patch testing intends to identify 

contact sensitized subjects by distinguishing between negative, irritant and allergic 

reactions. Thus, a valid positive patch test reaction typically requires a trained and 

experienced person that adheres to a set of valid criteria. Currently, the recommendations 

from the International Contact Dermatitis Research Group (ICDRG) dictate that 

homogeneous redness and infiltration in the entire test area is scored as a 1+ reaction, 

homogeneous redness, infiltration, and vesicles in the test area are scored as a 2+ reaction, 

and homogeneous redness, infiltration, and coalescing vesicles in the test area as a 3+ 

reaction (Wilkinson et al. 1970). 1+, 2+, or 3+ readings should be interpreted as positive 

responses indicating contact sensitization whereas irritant responses, doubtful (+?) 

responses, or negative readings should be interpreted as negative responses (Fig. 4). 

Clinicians should be aware that false positive and negative reactions may be encountered 
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(Wahlberg 2006). Albeit there is raising concern that the patch test mainly measures 

cutaneous metal allergy rather than allergic reactions caused and effectuated by systemic 

immune cells, the patch test has worked well to establish an association between metal ion 

concentrations in the blood and urine, metal allergy and loosening of 1st generation metal-

on-metal hip implants. It is clear that a system test, e.g. the lymphocyte transformation test 

that measures immune reactivity in bone near structures or the blood may have a higher 

sensitivity and it is therefore warranted. However, no such test system is currently available 

for allergist and surgeons in most centres and countries. 

 

 

Fig. 4. Patch test reactions following 48 hours of occluded 5% nickel sulphate exposure. 
Upper line from left to right: irritative reaction, doubtful reaction (+?), and doubtful reaction 
(+?). Lower line from left to right: weak positive (1+), moderate positive (2+), and strong 
positive (3+) allergic reactions.  

4.5.4 Other tests available 

In vitro tests such as the macrophage migration test, the lymphocyte blastic transformation 
test and the lymphocyte transformation test have mostly been used in research projects 
(Rasanen and Tuomi 1992; Bordignon et al. 2008). None of these have become routine 
analyses in the clinical setting, even when 2 or 3 methods have been combined. The 
lymphocyte transformation test measures proliferation of lymphocytes from peripheral 
blood in the presence and absence of a potential allergen after incubation for 7 days. The 
result is reported as a stimulation index (SI) and is therefore quantitative. The little use of 
such in vitro test is mainly explained by an overall limited availability, a small number of 
allergens that can be tested, and the need for fast examination of lymphocytes after 
sampling since they rapidly become incapable of proliferating. Nevertheless, the 
lymphocyte proliferation test has been claimed to better reflect immune reactions within the 
body whereas the patch test mainly rather reflect cutaneous reactivity. Thus, a linear 
correlation was identified between serum metal ion levels and lymphocyte reactivity 
suggesting that in vivo metal release is directly associated with metal contact allergy (Hallab 
et al. 2004). 

4.5.5 Clinical work-up 

It is difficult to make general principles for good clinical practice before and after surgery 
regarding delayed type hypersensitivity reactions to orthopaedic implants. Allergic 
reactions to metal ions released from implants are rare and at the same time metal allergy 
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remains very frequent. This obviously makes it difficult to identify the few allergic subjects 
at risk before developing implant failure. Although it is a matter of controversy, it seems 
sensible to refrain from routine patch testing/allergy testing prior to surgery unless the 
patient has already had implant surgery with complications suspected to be allergic or a 
history of clinical metal intolerance of sufficient magnitude to be of concern to the patient or 
a health provider (Thyssen et al. 2011a). If a patient is strongly allergic to e.g. nickel or 
cobalt, one should consider inserting titanium based alloys. To demonstrate causal 
relationship between delayed type of hypersensitivity and aseptic loosening strict criteria 
(Tab. 2) should be followed (Thyssen et al. 2011a).  
 

Criteria Description 

1. Histology consistent with a delayed type hypersensitivity reaction. 

2. Positive patch test reaction to a metal used in the implant (often strong 
reactions). 

3. Positive in vitro test to metals, e.g. the lymphocyte transformation test.  

4. Complete recovery following removal of the offending implant material.  

Table 2. Objective criteria that support a causative association between metal release from 
the implant, metal allergy and delayed type hypersensitivity reactions such as implant 
loosening, malfunction, pain or chronic inflammation (from Thyssen et al. 2011a) 

4.6 Aseptic loosening as a result of local failure of tissue homeostasis (Gallo) 

The term “homeostasis” was coined by Claude Bernard in 1865 to describe the constancy of 
the internal environment as a condition of health. Metchnikoff has introduced the concept 
into immunology together with the term physiological inflammation to mean active 
maintenance of tissue harmony, tissue harmony (Medzhitov 2010). Given that the majority 
of patients profit from THA, it appears that low-grade periprosthetic inflammation 
occurring around “healthy” THA may be a normal adaptive response to the continual 
burden of prosthetic particles and mechanical stresses associated with implant use. For this 
reason, processes leading to osteolysis and aseptic loosening can be investigated as a 
problem of maladaptation.  
In reality, no one knows what are the histological and immunological parameters associated 
with long-term “physiological” tissue homeostasis around THA, a baseline for true 

understanding of periprosthetic pathology. We can only translate data from models of THA 
(animal in vivo or in vitro) to the human situation (El-Warrak et al. 2004; Ma et al. 2009) and 

compare these with analyses of tissues from failed THAs. Unfortunately, tissues retrieved 
during revision surgery reflect late stages of the process when local homeostasis has long 

failed in the majority of cases.  
What parameters are typical for physiological equilibrium between implant derived signals 
and healthy status of periprosthetic tissues in terms of maintenance of at least their 
architecture and function? The first and inevitable condition is stable interface between implant 
and bone which protects tissues from the deleterious effects of mechanical stimuli (stable 
equilibrium of implant-bone interface). The ideal condition is when the bone around the 
implant is protected from excessive mechanical stresses and strains and at the same time can 
undergo bone remodelling. The next critical step is the ability to resolve inflammation induced 
by surgical trauma together with prevention of biofilm formation on the prosthetic surface. Both 
the inability to achieve a steady very low-inflammatory status as early as possible and the  

www.intechopen.com



 
Recent Advances in Arthroplasty 344 

 

Fig. 5. Components of inflammatory response to a potential set of biological and physical 
insults associated with total hip arthroplasty (inducers of inflammation); host sensors detect 
the occurrence of inducers at tissues and their recognizing triggers expression of 
inflammatory mediators that affect the tissues where the inducers occur (according to 
Medzhitov 2010)  

occurrence of microbial biofilm in the joint can maintain chronic inflammation which 

seriously compromises the local tissue homeostasis. The third critical step is the ability of 

tissues to counteract the continual delivery of soluble (ionic) and insoluble (particles) debris 

liberated from the prosthetic surfaces without increased inflammation and tissue damage. 

Prosthetic debris can induce a multitude of interactions which greatly increase the 

probability of chronic inflammation and predominance of osteoclasts over the osteoblasts at 

the bone-implant interface (Part 2.2). To avoid developing particle disease, there has to be 

much stronger regulation ability to overcome the above inflammatory and destructive 

processes. If these regulatory factors were known, new preventative and regulative 

measures could be proposed. The fourth critical step is the regenerative potential of the 

periprosthetic tissues that can restore tissue damage regardless whether this is of mechanical, 

biological or combined origin. Recently for instance, it has been proposed that a part of the 

inter-individual variance in the risk of early prosthetic migration (i.e. late aseptic loosening 

development) could be explained by patient-specific differences in the regeneration 

processes around the implant early post-operatively (Aspenberg et al. 2008). Taken together, 

when these steps concur, the probability of aseptic loosening is reduced and mutatis 

mutandis, if any of these steps is disturbed the route to aseptic loosening is open. 

Normal tissue homeostasis is regulated by complex cross-talk between stem cells, their 

differentiated cells, the local microenvironment, and the whole organism (Perez-Losada and 

Balmain 2003). Basically, this depends on the right cell being in the right place at the right 

time (Buckley 2011). In periprosthetic reality this means, having sufficient number of 

functional macrophages, osteoblasts, fibrocytes-fibroblasts, and lymphocytes in a 

configuration that prevents development of chronic inflammation, fluid oversecretion, and 
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increased accumulation of osteoclasts around the implant. The number of terminally 

differentiated cells is regulated by the mitotic activity of the stem cells in a poorly 

understood feedback interaction with local and systemic factors.  

A very important role is also played  by the local microenvironment which may favour 
development a particular cell line (Konttinen et al. 2005). In the case of THA, the inducers 
of inflammation can never be completely eliminated thus the tissues are under permanent 
activation load not only by mechanical stresses and particles but also by cytokines/ 
chemokines produced by cells previously activated by particles and/or microbial 
remnants. In fact, even under such conditions, the majority of periprosthetic tissues 
(patients) develop a steady state for a long time postoperatively. How is this possible? 
Can the tissues of successful patients develop something akin to “tolerance” (decreased 
responsiveness to the prosthesis-related stimuli)? Generally, to keep tissues in low-
inflammatory steady state require as low load of inducers as possible and also very fine tuning of 
sensors together with strict control of the quantity and activities of effector molecules/cells (Fig. 5). 
On the other hand, the inability to resolve chronic high-grade inflammation can lead to 
irreversible tissue damage with restoration of different tissues (fibrous tissue instead of 
bone, formation of granulomas etc.).  

4.6.1 Control of prosthesis-related inducers 

Regarding the control of prosthesis-related inducers, most important appears to be reduction 
of the particle loads either using hard bearings or modern technologies of prosthetic surface 
treatment (Part 5.1). Of biological inflammation inducers, the most important roles are 
played by cell necrosis, extracellular matrix damage (both deliberating damage-associated 
molecular patterns, DAMPs), reactive oxygen species (ROS), hypoxia, and activation of PRRs. 
Cell necrosis can affect both macrophages and other cell groups. It can be a result of strong 
foreign particle load (particles are per se undigestable, cytotoxic, genotoxic), hypoxia, ROS or 
unfavourable mechanical conditions. These stimuli can lead separately or combined to 
irreparable DNA damage and eventually cell death. Molecules released from dying cells 
together with breakdown products of the extracelullar matrix are considered important 
inducers of inflammation. In contrast, ingestion of apoptotic cells is associated with release 
of inflammation-resolving cytokines IL-10 and TGF-┚ (Nathan and Ding 2010). From this, it 
follows that the ratio of necrotic cells to apoptotic cells around the implant could play a 
significant role in relation to periprosthetic homeostasis (Landgraeber et al. 2009).  
Hypoxia seems to be a common feature in aseptic loosening. Bone-implant interface 
membranes can suffer from hypoxia because it is hypovascular, due to chronic hypoxia-
reperfusion injury of the interface membrane which is caused by implant loading. There is 
also  increased oxygen consumption by local inflammatory cells (Santavirta et al. 1999). A 
hypoxic environment induces the expression of hypoxia-inducible factors (HIF-1┙, HIF-2┙) 
and some heat shock proteins that adapt the gene expression to oxygen availability within 
the hypoxic tissue. For this reason, decreased profileration is a fundamental physiological 
response to hypoxia in many cell types (Hubbi et al. 2011). Proliferation of progenitor cells is 
controlled by the hypoxia-sensitive Notch signalling pathway which maintains them in an 
undifferentiated state (Hilton et al. 2008). On the other hand, tissue macrophages are 
relatively well adapted to hypoxic conditions. This could at least partially explain their 
massive presence in periprosthetic membranes. Monocytes continue to differentiate into 
tissue macrophages even under severe hypoxia (0.2% O2) and macrophages increase 
significantly their expression of HIF-1┙ mRNA and pro-angiogenic cytokine vascular 
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endothelial growth factor (VEGF) as a response to chronic hypoxia. Hypoxia stimulates 
osteoclast differentiation, viability and activity, the latter predominantly via increased 
activity of hydrolytic enzymes including cathepsin K and in this way it could directly 
contribute to the extension of bone resorption around the THA. On the other hand, this 
effect depends on time and O2 concentration with reduction in number and activity of 
osteoclasts as a function of longevity and severity of hypoxia (Knowles and Athanasou 
2009). Osteoblastic cell lines can exhibit decreased growth, differentiation and 
mineralization capacity under hypoxic conditions. Moreover, these cells predominantly 
induce angiogenesis via  increased secretion of VEGF (Knowles and Athanasou 2009). An 
important role in the transduction of hypoxic signal to bone-implant interface may be 
played by osteocytes via increased expression of HIF and osteopontin leading eventually to 
osteocyte-induced osteoclastic bone resorption (Gross et al. 2005).  
Activation of PRRs by occurrence of PAMPs in periprosthetic tissues can distort local tissue 
homeostasis at any time postoperatively (Greenfield et al. 2010). PRRs have a strong 
potential to trigger inflammation via several pathways including differentiation of more 
aggressive M1 and M17 macrophages, multinuclear foreign body giant cells, osteoclasts and 
granulomas (Anderson et al. 2008). In addition, it has been shown that polymeric alkane 
structures released during UHMWPE breakdown can directly activate PRRs (TLR-1, 2 
signalling pathway) while UHMWPE particles phagocytosed by periprosthetic cells induce 
endosomal destabilization and inflammasome activation (Maitra et al. 2009).  

4.6.2 Tuning of inflammatory sensors and their response to prosthetic-related stimuli 

Currently there is no evidence supporting the concept of “adaptation of inflammatory 
sensors” to chronic stimuli associated with prosthesis. The following is therefore simply 
translated from knowledge of the response of macrophages to microbial stimuli (Medzhitov 
and Horng 2009).  
After several hours or days of prosthetic-related stimulation, the expression of several 
hundreds of genes could be induced by macrophages, fibroblasts and other cell groups. 
These gene expressions determine cell response to the stimuli. Simultaneously, a set of 
regulators is co-activated to control intensity and extension of the local inflammatory 
response (negative regulators of inflammation). These can be distinguished as signal-specific 
regulators and gene-specific regulators. The first category consists of regulators that inhibit 
signal transduction by PRRs and other inflammatory pathways (e.g. IL-1R-associated kinase 
M, IRAKM; suppressor of cytokine signalling, SOCS – proteins). The second category 
comprises transcriptional repressors (basal repressors and inducible repressors) or other 
negative regulators that modulate gene expression (e.g. microRNAs, long-non coding 
RNAs). Although there is no evidence that currently supports the existence of “adaptors” on 
prosthetic stimuli, we believe they must exist. Assuming their role, it may be postulated that 
in the absence of a key part of the negative feedback loop the proinflammatory 
cytokines/chemokines develop severe inflammatory microenvironment associated 
especially with the predominance of activated osteoclasts over functional osteoblasts , and 
vice versa, effective negative regulation of sensors could protect from development of 
osteolysis and aseptic loosening (Parts 4.2, 4.3).  

4.6.3 Control of the effectors 

Generally, macrophages lie at the centre of the process called particle disease. Therefore 
there is a question whether activated macrophages can be deactivated and what are the 
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mechanisms underlying the tolerance to chronic unsolvable signalling. Theoretically, there 
are at least two ways leading to deactivation of macrophages. The first is associated with 
decrease in stimulation signalling level (e.g. interferon gamma and other cytokines, 
lipopolysaccharides and other bacterial stimuli). The second could be associated with 
activity of tissue-resident cells inducing negative modulation of macrophage pro-
inflammatory activities and macrophage apoptosis (Valledor et al. 2010).  
Activated fibroblasts perpetuate inflammation via inappropriate expression of survival 
molecules leading to the retention of activated cells in affected tissues or ectopic secretion of 
chemokines supporting recruitment of new cells as a fuel for continuation of inflammation 
(Buckley 2011). They also express several bone-resorbing metalloproteinases and 
“osteoclastogenic” cytokines in periprosthetic membranes including M-CSF, VEGF or RANKL 
contributing together with suppression of osteoblast function, to functional predominance of 
bone resorption over osteogenesis (Koreny et al. 2006). Based on these observations, it seems 
inevitable that deactivated and quiescent fibroblasts can, like macrophages significantly 
contribute to the resolution of particle-induced inflammation. Recent studies have revealed 
that inflammation is not generic but contextual. Therefore, tissue-resident fibroblasts are able to 
switch the inflammation to the resolution. In this connection, it is important to know which 
mechanisms induce fibroblast anti-inflammatory and regeneration activities. Firstly, 
fibroblasts could act as a source of anti-inflammatory and regenerative cytokines such as IL-4, 
IL-10, FGF and several others. Secondly, fibroblasts can provide anti-inflammatory stromal 
microenvironment in the periprosthetic interface membrane involving a plethora of cell-to-cell 
and perhaps also paracrine interactions (Buckley 2011).  
Lymphocytes together with other cells enhance osteoclast differentiation; stimulate formation 
of foreign body giant cells and exhibit many other activities contributing to tissue damage. 
On the other hand, they have several pathways by which they can “shift” the immune response 
in favour of TH2 and TH3 instead of TH1 and TH17 responses or delayed type of 
hypersensitivity (Matzinger and Kamala 2011). 
Until now, we have assumed that the immune system alone dictates the direction and fate of 
periprosthetic tissues after stimulation by prosthetic derivates. However, this concept does 
not reflect the reality of the situation. Currently discussed is the concept of tissue-appropriate 
immunity, stressing the role of tissues in control of the effector mechanisms that prevent self-
destruction (Matzinger and Kamala 2011). On this basis, tissue-resident cells might influence 
the response to stimulus in order to maintain the health of affected tissues by modifying cell 
activities and via soluble anti-inflammatory factors. Unfortunately, no such strategy is 
available currently in clinical practice to modify the above processes and induce/maintain 
localized tissue homeostasis around THA. 

4.7 Individual susceptibility to aseptic loosening/ development of periprosthetic 
osteolysis (Gallo, Petrek) 
High variability in survival of THAs, aseptic loosening/size of periprosthetic osteolysis has 
been observed between individuals with similar polyethylene wear rates. For this reason, 
the question is how to explain such a degree of inter-patient variability? This could be 
caused for example, by differences in implants (e.g. type of bearing material, sterilisation 
method, shape of prosthesis, surface technology etc.), variations in surgical technique 
(orientation of implants, final quality of bone-implant interface, protection of bone bed from 
joint fluid etc.), and variations due to patient-related factors (e.g. age, co-morbidities, level of 
activity and differences in mechanical loading). In addition, genetic factors can contribute to 
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the risk for aseptic loosening (Fig. 6). Engh et al estimated that both wear and patient 
propensity to osteolysis might together account for 53% of the variance in  total area of 
osteolysis (Engh et al. 2011).  
 

 

Fig. 6. Functional variation in genes for cytokines (other molecules) could influence the rate 
of aseptic loosening via contribution to severity of bone resorption around the implant  

4.7.1 Methods for investigating genetic susceptibility to aseptic loosening/ 
periprosthetic osteolysis 
The question is which genes (genotype) could influence the fate of implant in terms of 
premature aseptic loosening/ periprosthetic osteolysis (phenotype). A gene is traditionally 
defined as a segment of DNA encoding a protein. Single nucleotide polymorphism (SNP) is 
a common form of variation in the human genome implicating that a single base change in 
the DNA sequence could influence the amount/functionality of secreted proteins. With the 
sequencing of the human genome, it has been recognized that SNPs occur about once every 
1000 base pairs (Dupuis and O'Donnell 2007). The key problem is how to distinguish the gold 
(functional polymorphisms) from fool´s gold (unimportant variants). By genotyping a large 
number of SNPs in a large number of patients there is a good chance of detecting those that 
are significantly associated with the target disease. Unfortunately, epigenetic factors and 
further DNA sequence variants such as copy number variants create other sources of 
variation between individuals. In addition, there are several non-coding small regulatory 
molecules (e.g. miRNAs, siRNAs) that significantly influence the process of translation of 
genes into effector proteins.  
According to the number of genes participating in the pathophysiology of a disease and the 
size of their effect, polygenic predisposition assuming small/ marginal effects of many genes 
fits much better to the model of THA failure than the oligogenic model with two or more 
major gene (locus) effects. In this line, the odds ratios of 1.2 to 1.6 are required for 
differentiating true effects of individual genetic variants on a complex disease from the 
potential impact of bias (Ioannidis et al. 2006). Studies reporting weaker individual size 
effects are unlikely to be used for predicting a target condition; on the other hand, a 
combination of several even weaker genetic variants (especially at multiple loci) can increase 
the chance for reasonable prediction.  
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Genetic variation in patient-specific response to THA can be determined by several 
methods. For example, genetic association studies investigate possible association between the 
occurrences of phenotypic traits and candidate genetic variants using special rules and 
computational algorithms. In the case of genome-wide association studies the effects of up to 
500,000 SNPs are analysed simultaneously, giving rise to an initial set of promising 
susceptibility genes that are further tested in a separate replication study.  
When dealing with a genetic – environmental interaction it is necessary to test simultaneously 
cases, controls exposed to the same key pathogenetic factors as the cases but do not exhibit the risk 
phenotype, and the population control. In the case of aseptic loosening/osteolysis it is however 
rather difficult to recruit completely comparable cases and controls making it hard to address 
the question of individual susceptibility to these complications. In addition, identifying and 
characterizing the targets (mechanisms/molecules) for a genetic-association study is a key 
prerequisite for genetic investigation, and vice versa, inaccuracy in understanding the true 
pathophysiology of aseptic loosening/osteolysis compromises their outcomes. Therefore, the 
initial step of any genetic-association study should be choice of potentially valuable candidate genes 
followed by their validation in a candidate-gene study (Chanock et al. 2007).  

4.7.2 Current status of the research 

Wilkinson et al were the first to publish a study on the association between polymorphisms 
in the gene encoding for TNF alpha and risk of periprosthetic osteolysis in THA (Wilkinson 
et al. 2003). After this introductory work several papers were published nominating other 
molecules as candidates involved in the processes of aseptic loosening/ osteolysis. 
Structurally and functionally, these include receptors, intracellular mediators, enzymes, 
cytokines and other proteins. A recently published systematic review on genetically 
determined susceptibility to aseptic loosening of THA, revealed several areas of potential 
agreement (SNPs of TNF-238A allele, IL1RA +2018C allele, polymorphisms in genes for IL-
6, MMP-1 etc.), but also several sources of heterogeneity between studies, showing the need 
for  large multi-centre prospective studies that should provide stronger evidence for genetic 
predisposition to THA premature failure (Del Buono et al. 2011). As a result, further 
progress in the field of genetic risk of aseptic loosening/ osteolysis will require both 
sophisticated research strategy and statistics (e.g. improved risk-analysis models) to 
overcome a series of challenges. Fortunately, as experience accumulates, there is increased 
interest of orthopaedic specialty in the outcomes of such research.  

5. Prevention of aseptic loosening/ periprosthetic osteolysis (Gallo, 
Goodman, Konttinen) 

5.1 Biomaterial solutions 

Based on the pathophysiology of periprosthetic osteolysis and aseptic loosening, there is 
clear that advances in biomaterials can improve at least partially the survival of THA by 
reducing the extension and intensity of particle disease. Here we focus only on bearing 
surfaces, although the material of implant and surface technology also influence the 
resistance against osteolytic membrane and joint fluid expansion. 

5.1.1 Advances in polyethylene 

The wear of ultra high molecular weight polyethylene (UHMWPE) is a major contributor to 
premature failure of THAs. For this reason, a number of years ago,  it was questioned 
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whether this material should be retained  or  withdrawn (Amis 1996). Fortunately, over the 
recent decades, several processing techniques have been developed to improve the 
mechanical and tribological performance of UHMWPE. More recent technologies involving 
high degree cross-linkage of the linear chains of UHMWPE (highly-cross linked 
polyethylene, HXLPE) have been incorporated into clinical practice for several years. These 
also differ from company to company according to method used for the elimination of 
residual free radicals that could lead to oxidative degradation of bearing surface (heating, 
infiltration of vitamin E etc.). In comparison to ceramic-on-ceramic (CoC) THA, the 
advantage of HXLPE is greater variety in terms of head sizes and offset. Also the cost of 
HXLPE is substantially lower than that for hard bearing surfaces. On the other hand, there 
remains a concern  about the risk of fatigue fracture of acetabular liners even though the 
cases reported  were made predominantly of first generation HXLPE (Furmanski et al. 2009). 
Little is known on the biological activity of HXLPE particles. It was demonstrated 
moderately increased specific biological activity in comparison to particles of conventional 
polyethylene (Illgen et al. 2009). Despite that, there is growing evidence that the use of 
modern HXLPE bearings decrease significantly wear rate and by this way may reduce the 
risk of premature osteolysis development although the  majority of studies report outcomes 
with less than 10 years follow-up (Kurtz et al. 2011).  

5.1.2 Advances in ceramic bearings 
The amount of prosthetic particles can be significantly reduced using CoC bearings in THA. 
Ceramics, in general are very hard materials with excellent biocompatibility. In addition, 
use of third generation ceramic bearings, reduces the predicted risk for fracture of ceramic 
bearings to approaching nil. Currently there is enough evidence supporting the further use 
of CoC bearings in the case of THA (Hannouche et al. 2011). Concerns remain about the 
“squeaking” of ceramic implants, impingement of the femoral neck on the edge of ceramic 
liner and microseparations of ceramic surfaces.  
Oxinium is a Zr-2.5 Nb alloy that has been oxidized at elevated temperature to grow a 
zirconium oxide ceramic layer on the surface of the implant. Such surface treatment 
increases the wear resistance of the implant. However, there is only limited clinical 
experience with OxiniumTM femoral heads in THA.  

5.1.3 Advances in metal 
Bearing surfaces made of cobalt, chromium and molybdenum alloys are currently a subject 
of controversy because of their biological consideration. The main reason is that metallic 
wear particles can induce implant hypersensitivity, ALVAL (Part 3.2.2), may contribute to 
tissue necrosis and also to induction and perpetuation of periprosthetic particle disease 
(Watters et al. 2010; Basko-Plluska et al. 2011). In addition, the levels of metal ions in serum 
and urine also can be elevated for a long time in patients with stable and functional implants 
in comparison to controls without metallic implants. Although long-term data are not 
available, the International Agency for Research on Cancer (IARC) has classified implanted 
foreign bodies consisting of metallic cobalt, nickel and chromium in Group 2B defined as 
possibly carcinogenic in humans (McGregor et al. 2000). The main concern is that exposure 
of human cells to cobalt and chromium may induce chromosomal aberrations and damage 
DNA, potentially leading to carcinoma (Beyersmann and Hartwig 2008). From a purely 
epidemiological view, the current evidence for clinical carcinogenetic effects of metal-on-
metal THAs is limited and rigorous long-term studies are needed to answer the above 
question. Taken together, above potential consequences from the clinical usage of bearing 
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surfaces made of cobalt, chromium, molybdenum alloy should be discussed with the patient 
prior to his/her surgical procedure.  

5.2 Design solutions 
THA has to withstand repetitive mechanical loading and long term exposure in the human 
body without compromising the integrity of either implant or bone-implant interface (Tarala 
et al. 2011). Engineers can help to prevent, at least partially, the development of 
periprosthetic osteolysis and aseptic loosening by creating a design and surface 
characteristics that increase the resistance of implant-bone interface to osteolytic granulomas 
and preventing access of joint fluid to the bone bed. The current evidence is in favour of 
bone remodeling being responsible for long-term bone-implant fixation. In this line, more 
biologically active prosthetic surfaces have been introduced into clinical practice (e.g. 
porous metals, hydroxyapatite coating etc.). Currently, multifunctional surfaces are tested 
with the aim of improving osseointegration and preventing the formation of biofilm. 
Recently, attempts have been made to coat implants with mesenchymal stromal (stem) cells 
(MSCs). The hypothesis is that such cells could enhance bone formation and subsequent 
implant fixation via intramembranous or endochondral ossification. However, the eventual 
role and fate of endogenously mobilized or exogenously delivered MSCs in implant fixation 
is still poorly known. 

5.3 Patient selection  
The final outcome of THA depends on a large number of factors including the design of the 
implant, surgical technique, and patient selection. Currently there are no scientifically 
proven criteria for matching individuals to particular implant. At the time of surgery, the 
decision should involve the age of the patient, his/her local bone status and overall health condition 
enabling rough estimation of time in use for the THA. Based on current best evidence, 
younger more active patients have several options to minimize wear, loosening and 
osteolysis, and thereby optimize implant longevity.  These alternatives include ceramic-on-
ceramic bearings or ceramic head or highly polished cobalt-chrome femoral heads 
articulating with highly-cross linked polyethylene. 
Another concern relates to primary diagnosis and the expecting of worse prognosis especially 
in patients with osteoarthritis after developmental dysplasia in comparison with those with 
idiopathic osteoarthritis. This may be associated at least partially with severity of dysplasia 
(Chougle et al. 2005). In fact, experienced surgeon and choice of implant could also play a 
role. Recent analysis from the Danish Hip Arthroplasty Registry failed to reveal substantial 
differences in revision risk between the above groups with follow-up of from 0.5 to 12 years 
postoperatively (Thillemann et al. 2008). Low revision rate has been observed in both 
cemented and cementless THA (Sochart and Porter 1997; Rozkydal et al. 2005). Rheumatoid 
arthritis does not require a special approach even in young patients. Regarding the choice of 
implant in these patients, a higher risk of revision was found for THAs with uncemented 
cups and cemented stems according in the Finnish Arthroplasty Registry (Eskelinen et al. 
2006). However, the difference in survivorship between cemented and uncemented THAs 
disappeared in patients older than 55 years old (Makela et al. 2011).  

5.4 Operative procedures 

Surgically-related variables are those related to wear rate and those that influence the 
strength of implant-bone fixation. Wear rate can be influenced primarily by appropriate choice 
of implant and experienced surgical technique especially in terms of positioning of the cup and 
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stem, assuming both the inappropriate bearing surfaces and/or incorrect positioning of the 
implants contribute to increased wear rate and risk of osteolysis development (Little et al. 
2009). Surgical technique can also influence the strength of implant-bone interface. In this 
connection, any mistake during cementation can increase the risk of premature failure 
(Barrack, Mulroy et al. 1992). In support, it seems that high-volume surgeons can achieve 
lower revision rates than low-volume surgeons especially during the early period after the 
surgery (Losina et al. 2004). 

5.5 Life with total hip arthroplasty 

Charnley believed that THA is appropriate for older people with limited physical 
expectations (Charnley and Feagin 1973). Later on, younger and more active patients were 
indicated for prosthetic hip surgery and the expectations of these patients have increased 
continually. In fact, younger patients who are treated by THA wish to return to recreational 
and even competitive sports activity. At the same time,  patient activity is considered one of 
the most important factors in the risk of failure especially via increased wear-rate of bearing 
surfaces (Schmalzried et al. 2000). By this way, those who experience high-levels of activity are at 
increased risk for failure due to aseptic loosening and osteolysis, and vice versa, lower impact 
activities are less likely to create conditions appropriate to loosening (Kilgus et al. 1991; 
Lubbeke et al. 2011). Regarding the stability of bone-implant interface, there may be a 
concern about cracks followed by fracture of the cement mantle in association with high-
impact load. Surgeons should advise patients with THA that all high-impact activities could 
compromise the durability of their implant, especially in terms of accelerated wear and 
premature aseptic loosening. Another possible concern is risk of fall and direct contact 
during these sport activities that could lead to catastrophic failure, periprosthetic fracture or 
dislocation of THA. In addition, patients should know that return to a high-load level is not 
possible without achieving a very good muscle condition and also appropriate skills in their 
coordination beforehand as muscles can share the forces traversing an artificial joint and 
thus could prevent its damage. On the other hand, regular repetitive physical activities 
positively affect both the bone (in accordance with Wolff´s law) and muscles near the 
artificial joint (Clifford and Mallon 2005; Wilson and Villar 2011).  

6. Conclusions (Gallo) 

Aseptic loosening is the leading cause of THA failure in the intermediate and long-term 
postoperative period. Causally it is associated with rapid wear rate inducing adverse host 
reaction to wear debris and to repetitive mechanical stresses and strains of the bone-implant 
interface. Here, we introduced the concept of failure of local tissue homeostasis as 
underlying the majority of processes leading to aseptic loosening. Given that the implant is 
stable in the second postoperative year and no gross pathology of bone-implant interface is 
seen on x-ray, then the fate of implant depends on the ability of host tissues (both, bone and 
soft tissues) to maintain homeostasis with minimum inflammation despite the occurrence of 
chronic mechanical and particle load. In this connection, the problem is the inability to 
maintain the balance at bone-implant interface and resolve inflammation in the 
periprosthetic tissues that can induce the excessive bone resorption around the implant 
(osteolysis) leading eventually to aseptic loosening. The increased knowledge of the 
mechanisms regulating the balance in periprosthetic tissues might open new avenues to 
prevent aseptic loosening and periprosthetic osteolysis. 
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7. List of abbreviations used in the chapter 

ALVAL Aseptic Lymphocyte-dominated Vasculitis-Associated Lesions
ARF Activation-Reversal-Formation cycles (bone remodelation)
BMP Bone Morphogenetic Protein
BMU Bone Multicellular Unit
CD Cluster of Differentiation
CoC Ceramic on Ceramic 
DTH Delayed-Type Hypersensitivity
ECM ExtraCellular Matrix
FBGCs Foreign Body Giant Cells
FGF Fibroblast Growth Factor
GM-CSF Granulocyte Macrophage Colony Stimulating Factor
HIF Hypoxia-Induced Factor
HLA  Human Leukocyte Antigen (HLA DR+ is a MHC II class II cell surface receptor) 
HXLPE Highly Cross-Linked PolyEthylene
ICAM InterCellular Adhesion Molecule
IFN-┛ Interferon gama
IL-1┚, 2 .. Interleukins
IRAK Interleukin-1-Receptor-Associated Kinase
LPS LipoPolySaccharide
MCP-1 Monocyte Chemoattractant Protein-1
M-CSF Macrophage Colony-Stimulating Factor
MHC Major Histocompatibility Complex
MIP Macrophage Inhibitory Protein
MoM Metal on Metal
MoP Metal on Polyethylene
MPa Megapascal (pressure unit)
MSCs Mesenchymal Stromal/Stem Cells
NF-κ┚ Nuclear Factor kappa beta
NK cells Natural Killer cells
OPG Osteoprotegerin
PAMPs Pathogen-Associated Molecular Patterns
PMMA PolyMethylMethAcrylate (bone cement)
PRRs Pattern-Recognition Receptors
RANK Receptor Activator of Nuclear factor Kappa beta
RANKL Receptor Activator of Nuclear factor Kappa beta Ligand
ROS Reactive Oxygen Species
SLIM Synovial membrane-Like Interface Membrane
SNP Single-Nucleotide Polymorphism
SOCS Suppressor Of Cytokine Signalling
TGF Transforming Growth Factor
THA Total Hip arthroplasty
TLRs Toll-Like Receptors
TNF-┙ Tumor Necrosis Factor alpha
TREG T-REGulatory lymphocytes
UHMWPE Ultra-High Molecular Weight PolyEthylene
VCAM Vascular Cell Adhesion Molecule
VEGF Vascular Endothelial Growth Factor

www.intechopen.com



 
Recent Advances in Arthroplasty 354 

8. Acknowledgements 

This study was supported by Internal Grant Agency Ministry of Health, Czech Republic 

(NT/11049-5), the Sigrid Juselius Foundation, by the Helsinki University Central Hospital 

evo-funds, Finska Läkaresällskapet, Wilhelm och Else Stockmanns Stiftelse, ORTON 

Orthopaedic Hospital of the Invalid Foundation, National Doctoral Programme of 

Musculoskeletal Disorders and Biomaterials, Danish Council for Strategic Research, 

European Science Foundation “Regenerative Medicine” RNP, and by Grant 1R01AR055650-

04 from the National Institute of Health and the French Granting Agency E.F.M.C. N°1. 

We apologize to all authors whose work could not be cited due to space limitations. 

9. References 

Al-Saffar, N. and P. A. Revell (2000). "Differential expression of transforming growth factor-
alpha and macrophage colony-stimulating factor/colony-stimulating factor-1R (c-
fins) by multinucleated giant cells involved in pathological bone resorption at the 
site of orthopaedic implants." J Orthop Res 18(5): 800-7. 

Amis, A. A. (1996). "Is polyethylene still the best prosthetic bearing surface?" J Bone Joint 
Surg Br 78(3): 345-8. 

Anderson, J. M. (2009). In vitro and in vivo monocyte, macrophage, foreign body giant cell, 
and lymphocyte interactions with biomaterials. In: Biological interactions on 
material surfaces. Eds. D. A. Puleo, Bizios, R. Dordrecht, Springer: 225-244. 

Anderson, J. M., A. Rodriguez, et al. (2008). "Foreign body reaction to biomaterials." 
Seminars in Immunology 20(2): 86-100. 

Aspenberg, P., N. Basic, et al. (2000). "Reduced expression of BMP-3 due to mechanical 
loading: a link between mechanical stimuli and tissue differentiation." Acta Orthop 
Scand 71(6): 558-62. 

Aspenberg, P., P. Wagner, et al. (2008). "Fixed or loose? Dichotomy in RSA data for 
cemented cups." Acta Orthop 79(4): 467-73. 

Baggiolini, M. and I. Clark-Lewis (1992). "Interleukin-8, a chemotactic and inflammatory 
cytokine." FEBS Lett 307(1): 97-101. 

Barrack, R. L., R. D. Mulroy, Jr., et al. (1992). "Improved cementing techniques and femoral 
component loosening in young patients with hip arthroplasty. A 12-year 
radiographic review." J Bone Joint Surg Br 74(3): 385-9. 

Basko-Plluska, J. L., J. P. Thyssen, et al. (2011). "Cutaneous and systemic hypersensitivity 
reactions to metallic implants." Dermatitis 22(2): 65-79. 

Beyersmann, D. and A. Hartwig (2008). "Carcinogenic metal compounds: recent insight into 
molecular and cellular mechanisms." Arch Toxicol 82(8): 493-512. 

Bordignon, V., F. Palamara, et al. (2008). "Nickel, palladium and rhodium induced IFN-
gamma and IL-10 production as assessed by in vitro ELISpot-analysis in contact 
dermatitis patients." BMC Immunol 9: 19. 

Boyle, W. J., W. S. Simonet, et al. (2003). "Osteoclast differentiation and activation." Nature 
423(6937): 337-42. 

Brasch, J., T. Henseler, et al. (1994). "Reproducibility of patch tests. A multicenter study of 
synchronous left-versus right-sided patch tests by the German Contact Dermatitis 
Research Group." J Am Acad Dermatol 31(4): 584-91. 

www.intechopen.com



 
Aseptic Loosening of Total Hip Arthroplasty as a Result of Local Failure of Tissue Homeostasis 355 

Buckley, C. D. (2011). "Why does chronic inflammation persist: An unexpected role for 
fibroblasts." Immunol Lett 138(1): 12-4. 

Burke, D. W., D. O. O'Connor, et al. (1991). "Micromotion of cemented and uncemented 
femoral components." J Bone Joint Surg Br 73(1): 33-7. 

Cadosch, D., M. S. Al-Mushaiqri, et al. (2010a). "Biocorrosion and uptake of titanium by 
human osteoclasts." J Biomed Mater Res A 95(4): 1004-10. 

Cadosch, D., O. P. Gautschi, et al. (2010b). "Titanium induced production of chemokines 
CCL17/TARC and CCL22/MDC in human osteoclasts and osteoblasts." J Biomed 
Mater Res A 92(2): 475-83. 

Cadosch, D., E. Chan, et al. (2009). "Metal is not inert: role of metal ions released by 
biocorrosion in aseptic loosening--current concepts." J Biomed Mater Res A 91(4): 
1252-62. 

Caicedo, M. S., R. Desai, et al. (2009). "Soluble and particulate Co-Cr-Mo alloy implant 
metals activate the inflammasome danger signaling pathway in human 
macrophages: a novel mechanism for implant debris reactivity." J Orthop Res 27(7): 
847-54. 

Clifford, P. E. and W. J. Mallon (2005). "Sports after total joint replacement." Clin Sports Med 
24(1): 175-86. 

Clohisy, J. C., E. Frazier, et al. (2003). "RANKL is an essential cytokine mediator of 
polymethylmethacrylate particle-induced osteoclastogenesis." J Orthop Res 21(2): 
202-12. 

Cook, D. N. (1996). "The role of MIP-1 alpha in inflammation and hematopoiesis." J Leukoc 
Biol 59(1): 61-6. 

Corbett, K. L., E. Losina, et al. (2010). "Population-based rates of revision of primary total hip 
arthroplasty: a systematic review." PLoS One 5(10): e13520. 

Del Buono, A., V. Denaro, et al. (2011). "Genetic susceptibility to aseptic loosening following 
total hip arthroplasty: a systematic review." Br Med Bull.  Epub ahead of print Jun 
7. 

Dempsey, K. E., M. P. Riggio, et al. (2007). "Identification of bacteria on the surface of 
clinically infected and non-infected prosthetic hip joints removed during revision 
arthroplasties by 16S rRNA gene sequencing and by microbiological culture." 
Arthritis Res Ther 9(3): R46. 

Derbyshire, B., R. J. Prescott, et al. (2009). "Notes on the use and interpretation of 
radiostereometric analysis." Acta Orthop 80(1): 124-30. 

Deshmane, S. L., S. Kremlev, et al. (2009). "Monocyte chemoattractant protein-1 (MCP-1): an 
overview." J Interferon Cytokine Res 29(6): 313-26. 

Djaafar, S., D. D. Pierroz, et al. (2010). "Inhibition of T cell-dependent and RANKL-
dependent osteoclastogenic processes associated with high levels of bone mass in 
interleukin-15 receptor-deficient mice." Arthritis Rheum 62(11): 3300-10. 

Dupuis, J. and C. J. O'Donnell (2007). "Interpreting results of large-scale genetic association 
studies: separating gold from fool's gold." JAMA 297(5): 529-31. 

El-Warrak, A. O., M. Olmstead, et al. (2004). "An experimental animal model of aseptic 
loosening of hip prostheses in sheep to study early biochemical changes at the 
interface membrane." BMC Musculoskelet Disord 5: 7. 

Engesaeter, L. B., S. A. Lie, et al. (2003). "Antibiotic prophylaxis in total hip arthroplasty: 
effects of antibiotic prophylaxis systemically and in bone cement on the revision 

www.intechopen.com



 
Recent Advances in Arthroplasty 356 

rate of 22,170 primary hip replacements followed 0-14 years in the Norwegian 
Arthroplasty Register." Acta Orthop Scand 74(6): 644-51. 

Engh, C. A., H. Ho, et al. (2011). "Osteolysis propensity among bilateral total hip 
arthroplasty patients." J Arthroplasty 26(4): 555-61. 

Engh, C. A., J. P. Hooten, Jr., et al. (1995). "Evaluation of bone ingrowth in proximally and 
extensively porous-coated anatomic medullary locking prostheses retrieved at 
autopsy." J Bone Joint Surg Am 77(6): 903-10. 

Eskelinen, A., P. Paavolainen, et al. (2006). "Total hip arthroplasty for rheumatoid arthritis in 
younger patients: 2,557 replacements in the Finnish Arthroplasty Register followed 
for 0-24 years." Acta Orthop 77(6): 853-65. 

Fahlgren, A., M. P. Bostrom, et al. (2010). "Fluid pressure and flow as a cause of bone 
resorption." Acta Orthop 81(4): 508-16. 

Faurschou, A., T. Menne, et al. (2011). "Metal allergen of the 21st century--a review on 
exposure, epidemiology and clinical manifestations of palladium allergy." Contact 
Dermatitis 64(4): 185-95. 

Fritz, E. A., T. T. Glant, et al. (2002). "Titanium particles induce the immediate early stress 
responsive chemokines IL-8 and MCP-1 in osteoblasts." J Orthop Res 20(3): 490-8. 

Fujii, J., Y. Yasunaga, et al. (2011). "Wear debris stimulates bone-resorbing factor expression 
in the fibroblasts and osteoblasts." Hip Int. 

Fujishiro, T., D. J. Moojen, et al. (2011). "Perivascular and diffuse lymphocytic inflammation 
are not specific for failed metal-on-metal hip implants." Clin Orthop Relat Res 
469(4): 1127-33. 

Furmanski, J., M. Anderson, et al. (2009). "Clinical fracture of cross-linked UHMWPE 
acetabular liners." Biomaterials 30(29): 5572-82. 

Gallo, J., V. Havranek, et al. (2010). "Male gender, Charnley class C, and severity of bone 
defects predict the risk for aseptic loosening in the cup of ABG I hip arthroplasty." 
BMC Musculoskelet Disord 11: 243. 

Gallo, J., P. Kaminek, et al. (2002). "Particle disease. A comprehensive theory of 
periprosthetic osteolysis: a review." Biomed Pap Med Fac Univ Palacky Olomouc 
Czech Repub 146(2): 21-8. 

Goldstein, I. M., D. Roos, et al. (1975). "Complement and immunoglobulins stimulate 
superoxide production by human leukocytes independently of phagocytosis." J 
Clin Invest 56(5): 1155-63. 

Goodman, S. B., P. Huie, et al. (1998). "Cellular profile and cytokine production at prosthetic 
interfaces. Study of tissues retrieved from revised hip and knee replacements." J 
Bone Joint Surg Br 80(3): 531-9. 

Goodman, S. B., R. C. Chin, et al. (1989). "A clinical-pathologic-biochemical study of the 
membrane surrounding loosened and nonloosened total hip arthroplasties." Clin 
Orthop Relat Res(244): 182-7. 

Goodman, S. B. and T. Ma (2010). "Cellular chemotaxis induced by wear particles from joint 
replacements." Biomaterials 31(19): 5045-50. 

Granchi, D., I. Amato, et al. (2005). "Molecular basis of osteoclastogenesis induced by 
osteoblasts exposed to wear particles." Biomaterials 26(15): 2371-9. 

Greenfield, E. M., M. A. Beidelschies, et al. (2010). "Bacterial pathogen-associated molecular 
patterns stimulate biological activity of orthopaedic wear particles by activating 
cognate Toll-like receptors." J Biol Chem 285(42): 32378-84. 

www.intechopen.com



 
Aseptic Loosening of Total Hip Arthroplasty as a Result of Local Failure of Tissue Homeostasis 357 

Gross, T. S., K. A. King, et al. (2005). "Upregulation of osteopontin by osteocytes deprived of 
mechanical loading or oxygen." J Bone Miner Res 20(2): 250-6. 

Hailer, N. P., R. A. Blaheta, et al. (2011). "Elevation of circulating HLA DR(+) CD8(+) T-cells 
and correlation with chromium and cobalt concentrations 6 years after metal-on-
metal hip arthroplasty." Acta Orthop 82(1): 6-12. 

Hailer, N. P., G. Garellick, et al. (2010). "Uncemented and cemented primary total hip 
arthroplasty in the Swedish Hip Arthroplasty Register." Acta Orthop 81(1): 34-41. 

Hallab, N., K. Merritt, et al. (2001). "Metal sensitivity in patients with orthopaedic implants." 
J Bone Joint Surg Am 83-A(3): 428-36. 

Hallab, N. J., S. Anderson, et al. (2004). "Immune responses correlate with serum-metal in 
metal-on-metal hip arthroplasty." J Arthroplasty 19(8 Suppl 3): 88-93. 

Hallab, N. J., M. Caicedo, et al. (2008). "Th1 type lymphocyte reactivity to metals in patients 
with total hip arthroplasty." J Orthop Surg Res 3: 6. 

Hallab, N. J. and J. J. Jacobs (2009). "Biologic effects of implant debris." Bull NYU Hosp Jt Dis 
67(2): 182-8. 

Hannouche, D., A. Zaoui, et al. (2011). "Thirty years of experience with alumina-on-alumina 
bearings in total hip arthroplasty." Int Orthop 35(2): 207-13. 

Hilton, M. J., X. Tu, et al. (2008). "Notch signaling maintains bone marrow mesenchymal 
progenitors by suppressing osteoblast differentiation." Nat Med 14(3): 306-14. 

Holt, G., C. Murnaghan, et al. (2007). "The Biology of Aseptic Osteolysis." Clin Orthop Relat 
Res 460: 240-252. 

Hubbi, M. E., W. Luo, et al. (2011). "MCM Proteins Are Negative Regulators of Hypoxia-
Inducible Factor 1." Mol Cell 42(5): 700-12. 

Huss, R. S., J. I. Huddleston, et al. (2010). "Synovial tissue-infiltrating natural killer cells in 
osteoarthritis and periprosthetic inflammation." Arthritis Rheum 62(12): 3799-805. 

Chanock, S. J., T. Manolio, et al. (2007). "Replicating genotype-phenotype associations." 
Nature 447(7145): 655-60. 

Charnley, J. and J. A. Feagin (1973). "Low-friction arthroplasty in congenital subluxation of 
the hip." Clin Orthop Relat Res(91): 98-113. 

Childs, L. M., J. J. Goater, et al. (2001). "Efficacy of etanercept for wear debris-induced 
osteolysis." J Bone Miner Res 16(2): 338-47. 

Childs, L. M., E. P. Paschalis, et al. (2002). "In vivo RANK signaling blockade using the 
receptor activator of NF-kappaB:Fc effectively prevents and ameliorates wear 
debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis." 
J Bone Miner Res 17(2): 192-9. 

Chougle, A., M. V. Hemmady, et al. (2005). "Severity of hip dysplasia and loosening of the 
socket in cemented total hip replacement. A long-term follow-up." J Bone Joint 
Surg Br 87(1): 16-20. 

Illgen, R. L., 2nd, L. M. Bauer, et al. (2009). "Highly crosslinked vs conventional polyethylene 
particles: relative in vivo inflammatory response." J Arthroplasty 24(1): 117-24. 

Ioannidis, J. P., T. A. Trikalinos, et al. (2006). "Implications of small effect sizes of individual 
genetic variants on the design and interpretation of genetic association studies of 
complex diseases." Am J Epidemiol 164(7): 609-14. 

Jasty, M., W. J. Maloney, et al. (1990). "Histomorphological studies of the long-term skeletal 
responses to well fixed cemented femoral components." J Bone Joint Surg Am 72(8): 
1220-9. 

www.intechopen.com



 
Recent Advances in Arthroplasty 358 

Jin, Z. M., Fischer, J., Ingham E. (2006). Biotribology: material design, lubrication, and wear 
in artificial hip joints. In: Handbook of Lubrication and Tribology. Volume I 
Application and Maintenance. Ed. G. E. Totten. Boca Raton, FL, CRC Press. 

Jones, L. C., M. Tucci, et al. (2006). "Macrophages and fibroblasts respond differently to 
PMMA particles and mechanical strain." Biomed Sci Instrum 42: 223-30. 

Kilgus, D. J., F. J. Dorey, et al. (1991). "Patient activity, sports participation, and impact 
loading on the durability of cemented total hip replacements." Clin Orthop Relat 
Res(269): 25-31. 

Kim, K. J., S. Kotake, et al. (2001). "Osteoprotegerin inhibits in vitro mouse osteoclast 
formation induced by joint fluid from failed total hip arthroplasty." J Biomed Mater 
Res 58(4): 393-400. 

Knowles, H. J. and N. A. Athanasou (2009). "Acute hypoxia and osteoclast activity: a balance 
between enhanced resorption and increased apoptosis." J Pathol 218(2): 256-64. 

Konttinen, Y. T., M. Takagi, et al. (2001). "Acid attack and cathepsin K in bone resorption 
around total hip replacement prosthesis." J Bone Miner Res 16(10): 1780-6. 

Konttinen, Y. T., D. Zhao, et al. (2005). "The microenvironment around total hip replacement 
prostheses." Clin Orthop Relat Res(430): 28-38. 

Koreny, T., M. Tunyogi-Csapo, et al. (2006). "The role of fibroblasts and fibroblast-derived 
factors in periprosthetic osteolysis." Arthritis Rheum 54(10): 3221-32. 

Korhonen, R. K., A. Koistinen, et al. (2005). "The effect of geometry and abduction angle on 
the stresses in cemented UHMWPE acetabular cups--finite element simulations and 
experimental tests." Biomed Eng Online 4(1): 32. 

Koulouvaris, P., K. Ly, et al. (2008). "Expression profiling reveals alternative macrophage 
activation and impaired osteogenesis in periprosthetic osteolysis." J Orthop Res 
26(1): 106-16. 

Kumar, H., T. Kawai, et al. (2011). "Pathogen recognition by the innate immune system." Int 
Rev Immunol 30(1): 16-34. 

Kumazawa, R., F. Watari, et al. (2002). "Effects of Ti ions and particles on neutrophil 
function and morphology." Biomaterials 23(17): 3757-64. 

Kurtz, S., K. Ong, et al. (2007). "Projections of primary and revision hip and knee 
arthroplasty in the United States from 2005 to 2030." J Bone Joint Surg Am 89(4): 
780-5. 

Kurtz, S. M., H. A. Gawel, et al. (2011). "History and Systematic Review of Wear and 
Osteolysis Outcomes for First-generation Highly Crosslinked Polyethylene." Clin 
Orthop Relat Res (469): 2262-77. 

Lahdeoja, T., J. Pajarinen, et al. (2010). "Toll-like receptors and aseptic loosening of hip 
endoprosthesis-a potential to respond against danger signals?" J Orthop Res 28(2): 
184-90. 

Landgraeber, S., S. Jaeckel, et al. (2009). "Pan-caspase inhibition suppresses polyethylene 
particle-induced osteolysis." Apoptosis 14(2): 173-81. 

Lappalainen, R., M. Selenius, et al. (2003). "Reduction of wear in total hip replacement 
prostheses by amorphous diamond coatings." J Biomed Mater Res B Appl Biomater 
66(1): 410-3. 

Lazarov, A., M. David, et al. (2007). "Comparison of reactivity to allergens using the TRUE 
Test and IQ chamber system." Contact Dermatitis 56(3): 140-5. 

Little, N. J., C. A. Busch, et al. (2009). "Acetabular polyethylene wear and acetabular 
inclination and femoral offset." Clin Orthop Relat Res 467(11): 2895-900. 

www.intechopen.com



 
Aseptic Loosening of Total Hip Arthroplasty as a Result of Local Failure of Tissue Homeostasis 359 

Losina, E., J. Barrett, et al. (2004). "Early failures of total hip replacement: effect of surgeon 
volume." Arthritis Rheum 50(4): 1338-43. 

Lubbeke, A., G. Garavaglia, et al. (2011). "Influence of patient activity on femoral osteolysis 
at five and ten years following hybrid total hip replacement." J Bone Joint Surg Br 
93(4): 456-63. 

Ma, J., T. Chen, et al. (2003). "Regulation of macrophage activation." Cell Mol Life Sci 60(11): 
2334-46. 

Ma, T., S. G. Ortiz, et al. (2009). "In vivo murine model of continuous intramedullary 
infusion of particles--a preliminary study." J Biomed Mater Res B Appl Biomater 
88(1): 250-3. 

Maitra, R., C. C. Clement, et al. (2009). "Endosomal damage and TLR2 mediated 
inflammasome activation by alkane particles in the generation of aseptic 
osteolysis." Mol Immunol 47(2-3): 175-84. 

Makela, K. T., A. Eskelinen, et al. (2011). "Cemented versus cementless total hip 
replacements in patients fifty-five years of age or older with rheumatoid arthritis." J 
Bone Joint Surg Am 93(2): 178-86. 

Mandelin, J., T. F. Li, et al. (2005a). "Interface tissue fibroblasts from loose total hip 
replacement prosthesis produce receptor activator of nuclear factor-kappaB ligand, 
osteoprotegerin, and cathepsin K." J Rheumatol 32(4): 713-20. 

Mandelin, J., T. F. Li, et al. (2003). "Imbalance of RANKL/RANK/OPG system in interface 
tissue in loosening of total hip replacement." J Bone Joint Surg Br 85(8): 1196-201. 

Mandelin, J., M. Liljestrom, et al. (2005b). "Pseudosynovial fluid from loosened total hip 
prosthesis induces osteoclast formation." J Biomed Mater Res B Appl Biomater 
74(1): 582-8. 

Matzinger, P. (2007). "Friendly and dangerous signals: is the tissue in control?" Nat Immunol 
8(1): 11-3. 

Matzinger, P. and T. Kamala (2011). "Tissue-based class control: the other side of tolerance." 
Nat Rev Immunol 11(3): 221-30. 

McEvoy, A., M. Jeyam, et al. (2002). "Synergistic effect of particles and cyclic pressure on 
cytokine production in human monocyte/macrophages: proposed role in 
periprosthetic osteolysis." Bone 30(1): 171-7. 

McGregor, D. B., R. A. Baan, et al. (2000). "Evaluation of the carcinogenic risks to humans 
associated with surgical implants and other foreign bodies - a report of an IARC 
Monographs Programme Meeting. International Agency for Research on Cancer." 
Eur J Cancer 36(3): 307-13. 

Medzhitov, R. (2010). "Inflammation 2010: new adventures of an old flame." Cell 140(6): 771-
6. 

Medzhitov, R. and T. Horng (2009). "Transcriptional control of the inflammatory response." 
Nat Rev Immunol 9(10): 692-703. 

Menten, P., A. Wuyts, et al. (2002). "Macrophage inflammatory protein-1." Cytokine Growth 
Factor Rev 13(6): 455-81. 

Mjoberg, B. (1994). "Theories of wear and loosening in hip prostheses. Wear-induced 
loosening vs loosening-induced wear--a review." Acta Orthop Scand 65(3): 361-71. 

Nakashima, Y., D. H. Sun, et al. (1999). "Induction of macrophage C-C chemokine expression 
by titanium alloy and bone cement particles." J Bone Joint Surg Br 81(1): 155-62. 

Nalepka, J. L., M. J. Lee, et al. (2006). "Lipopolysaccharide found in aseptic loosening of 
patients with inflammatory arthritis." Clin Orthop Relat Res 451: 229-35. 

www.intechopen.com



 
Recent Advances in Arthroplasty 360 

Nathan, C. and A. Ding (2010). "Nonresolving inflammation." Cell 140(6): 871-82. 
Ng, V. Y., A. V. Lombardi, Jr., et al. (2011). "Perivascular lymphocytic infiltration is not 

limited to metal-on-metal bearings." Clin Orthop Relat Res 469(2): 523-9. 
Ogino, D., H. Kawaji, et al. (2008). "Total hip replacement in patients eighty years of age and 

older." J Bone Joint Surg Am 90(9): 1884-90. 
Pajarinen, J., E. Cenni, et al. (2010). "Profile of toll-like receptor-positive cells in septic and 

aseptic loosening of total hip arthroplasty implants." J Biomed Mater Res A 94(1): 
84-92. 

Pearl, J. I., T. Ma, et al. (2011). "Role of the Toll-like receptor pathway in the recognition of 
orthopedic implant wear-debris particles." Biomaterials 32(24): 5535-42. 

Pedersen, A. B., S. P. Johnsen, et al. (2005). "Total hip arthroplasty in Denmark: incidence of 
primary operations and revisions during 1996-2002 and estimated future 
demands." Acta Orthop 76(2): 182-9. 

Perez-Losada, J. and A. Balmain (2003). "Stem-cell hierarchy in skin cancer." Nat Rev Cancer 
3(6): 434-43. 

Proudfoot, A. E. (2002). "Chemokine receptors: multifaceted therapeutic targets." Nat Rev 
Immunol 2(2): 106-15. 

Purdue, P. E., P. Koulouvaris, et al. (2007). "The cellular and molecular biology of 
periprosthetic osteolysis." Clin Orthop Relat Res 454: 251-61. 

Rasanen, L. and M. L. Tuomi (1992). "Diagnostic value of the lymphocyte proliferation test 
in nickel contact allergy and provocation in occupational coin dermatitis." Contact 
Dermatitis 27(4): 250-4. 

Reilkoff, R. A., R. Bucala, et al. (2011). "Fibrocytes: emerging effector cells in chronic 
inflammation." Nat Rev Immunol 11(6): 427-35. 

Ren, P. G., Z. Huang, et al. (2010). "Surveillance of systemic trafficking of macrophages 
induced by UHMWPE particles in nude mice by noninvasive imaging." J Biomed 
Mater Res A 94(3): 706-11. 

Ren, P. G., A. Irani, et al. (2011). "Continuous infusion of UHMWPE particles induces 
increased bone macrophages and osteolysis." Clin Orthop Relat Res 469(1): 113-22. 

Roder, C., B. Bach, et al. (2010). "Obesity, age, sex, diagnosis, and fixation mode differently 
affect early cup failure in total hip arthroplasty: a matched case-control study of 
4420 patients." J Bone Joint Surg Am 92(10): 1954-63. 

Rozkydal, Z., P. Janicek, et al. (2005). "Total hip replacement with the CLS expansion shell 
and a structural femoral head autograft for patients with congenital hip disease." J 
Bone Joint Surg Am 87(4): 801-7. 

Santavirta, S., Takagi, M., Gomez-Barrena, E., Nevalainen, J., Lassus, M., Salo, J., Konttinen, 
Y.T. (1999). "Studies of host response to orthopedic implants and biomaterials." J 
Long Term Eff Med Implants 9: 67-76. 

Schmalzried, T. P., E. F. Shepherd, et al. (2000). "The John Charnley Award. Wear is a 
function of use, not time." Clin Orthop Relat Res(381): 36-46. 

Schmalzried, T. P., E. S. Szuszczewicz, et al. (1998). "Quantitative assessment of walking 
activity after total hip or knee replacement." J Bone Joint Surg Am 80(1): 54-9. 

Sierra, J. M., S. Garcia, et al. (2011). "Relationship between the degree of osteolysis and 
cultures obtained by sonication of the prostheses in patients with aseptic loosening 
of a hip or knee arthroplasty." Arch Orthop Trauma Surg. Epub ahead of print May 
11. 

www.intechopen.com



 
Aseptic Loosening of Total Hip Arthroplasty as a Result of Local Failure of Tissue Homeostasis 361 

Sochart, D. H. and M. L. Porter (1997). "The long-term results of Charnley low-friction 
arthroplasty in young patients who have congenital dislocation, degenerative 
osteoarthrosis, or rheumatoid arthritis." J Bone Joint Surg Am 79(11): 1599-617. 

St Pierre, C. A., M. Chan, et al. (2010). "Periprosthetic osteolysis: characterizing the innate 
immune response to titanium wear-particles." J Orthop Res 28(11): 1418-24. 

Stanley, K. T., C. VanDort, et al. (2006). "Immunocompetent properties of human osteoblasts: 
interactions with T lymphocytes." J Bone Miner Res 21(1): 29-36. 

Summer, B., C. Paul, et al. (2010). "Nickel (Ni) allergic patients with complications to Ni 
containing joint replacement show preferential IL-17 type reactivity to Ni." Contact 
Dermatitis 63(1): 15-22. 

Sun, D. H., M. C. Trindade, et al. (2003). "Human serum opsonization of orthopedic 
biomaterial particles: protein-binding and monocyte/macrophage activation in 
vitro." J Biomed Mater Res A 65(2): 290-8. 

Takagi, M., S. Santavirta, et al. (2001). "High-turnover periprosthetic bone remodeling and 
immature bone formation around loose cemented total hip joints." J Bone Miner 
Res 16(1): 79-88. 

Takagi, M., Y. Tamaki, et al. (2007). "Toll-like receptors in the interface membrane around 
loosening total hip replacement implants." J Biomed Mater Res A 81(4): 1017-26. 

Takahashi, N., B. R. MacDonald, et al. (1986). "Recombinant human transforming growth 
factor-alpha stimulates the formation of osteoclast-like cells in long-term human 
marrow cultures." J Clin Invest 78(4): 894-8. 

Taki, N., J. M. Tatro, et al. (2007). "Comparison of the roles of IL-1, IL-6, and TNFalpha in cell 
culture and murine models of aseptic loosening." Bone 40(5): 1276-83. 

Tamaki, Y., Y. Takakubo, et al. (2009). "Increased expression of toll-like receptors in aseptic 
loose periprosthetic tissues and septic synovial membranes around total hip 
implants." J Rheumatol 36(3): 598-608. 

Tarala, M., D. Janssen, et al. (2011). "Balancing incompatible endoprosthetic design goals: a 
combined ingrowth and bone remodeling simulation." Med Eng Phys 33(3): 374-80. 

Theill, L. E., W. J. Boyle, et al. (2002). "RANK-L and RANK: T cells, bone loss, and 
mammalian evolution." Annu Rev Immunol 20: 795-823. 

Thillemann, T. M., A. B. Pedersen, et al. (2008). "Implant survival after primary total hip 
arthroplasty due to childhood hip disorders: results from the Danish Hip 
Arthroplasty Registry." Acta Orthop 79(6): 769-76. 

Thillemann, T. M., A. B. Pedersen, et al. (2010a). "Postoperative use of bisphosphonates and 
risk of revision after primary total hip arthroplasty: a nationwide population-based 
study." Bone 46(4): 946-51. 

Thillemann, T. M., A. B. Pedersen, et al. (2010b). "The risk of revision after primary total hip 
arthroplasty among statin users: a nationwide population-based nested case-
control study." J Bone Joint Surg Am 92(5): 1063-72. 

Thyssen, J. P., A. Linneberg, et al. (2007). "The epidemiology of contact allergy in the general 
population--prevalence and main findings." Contact Dermatitis 57(5): 287-99. 

Thyssen, J. P. and T. Menne (2010). "Metal allergy--a review on exposures, penetration, 
genetics, prevalence, and clinical implications." Chem Res Toxicol 23(2): 309-18. 

Thyssen, J. P., T. Menne, et al. (2011a). "Pragmatic approach to the clinical work-up of 
patients with putative allergic disease to metallic orthopaedic implants before and 
after surgery." Br J Dermatol 164(3): 473-8. 

www.intechopen.com



 
Recent Advances in Arthroplasty 362 

Thyssen, J. P., W. Uter, et al. (2011b). "The EU Nickel Directive revisited--future steps 
towards better protection against nickel allergy." Contact Dermatitis 64(3): 121-5. 

Tuan, R. S., F. Y. Lee, et al. (2008). "What are the local and systemic biologic reactions and 
mediators to wear debris, and what host factors determine or modulate the biologic 
response to wear particles?" J Am Acad Orthop Surg 16 Suppl 1: S42-8. 

Ulrich-Vinther, M., E. E. Carmody, et al. (2002). "Recombinant adeno-associated virus-
mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis." J 
Bone Joint Surg Am 84-A(8): 1405-12. 

Ulrich, S. D., T. M. Seyler, et al. (2008). "Total hip arthroplasties: What are the reasons for 
revision?" Int Orthop 32(5): 597-604. 

Uter, W. J., J. Geier, et al. (1996). "Good clinical practice in patch testing: readings beyond 
day 2 are necessary: a confirmatory analysis. Members of the Information Network 
of Departments of Dermatology." Am J Contact Dermat 7(4): 231-7. 

Valledor, A. F., M. Comalada, et al. (2010). "Macrophage proinflammatory activation and 
deactivation: a question of balance." Adv Immunol 108: 1-20. 

Vermes, C., R. Chandrasekaran, et al. (2001). "The effects of particulate wear debris, 
cytokines, and growth factors on the functions of MG-63 osteoblasts." J Bone Joint 
Surg Am 83-A(2): 201-11. 

Vocanson, M., A. Hennino, et al. (2009). "Effector and regulatory mechanisms in allergic 
contact dermatitis." Allergy 64(12): 1699-714. 

Wahlberg, J. E., Lindberg, M. (2006). Patch test. Contact Dermatitis. P. J. Frosch, Menne, T., 
Lepoittevin, J-P. Berlin, Springer. 

Watters, T. S., D. M. Cardona, et al. (2010). "Aseptic lymphocyte-dominated vasculitis-
associated lesion: a clinicopathologic review of an underrecognized cause of 
prosthetic failure." Am J Clin Pathol 134(6): 886-93. 

Weyand, C. M., A. Geisler, et al. (1998). "Oligoclonal T-cell proliferation and interferon-
gamma production in periprosthetic inflammation." Lab Invest 78(6): 677-85. 

Whyte, C. S., E. T. Bishop, et al. (2011). "Suppressor of cytokine signaling (SOCS)1 is a key 
determinant of differential macrophage activation and function." J Leukoc Biol. 
Epub ahead of print May 31. 

Wilkinson, D. S., S. Fregert, et al. (1970). "Terminology of contact dermatitis." Acta Derm 
Venereol 50(4): 287-92. 

Wilkinson, J. M., A. G. Wilson, et al. (2003). "Variation in the TNF gene promoter and risk of 
osteolysis after total hip arthroplasty." J Bone Miner Res 18(11): 1995-2001. 

Willert, H. G., J. Ludwig, et al. (1974). "Reaction of bone to methacrylate after hip 
arthroplasty: a long-term gross, light microscopic, and scanning electron 
microscopic study." J Bone Joint Surg Am 56(7): 1368-82. 

Willert, H. G. and M. Semlitsch (1977). "Reactions of the articular capsule to wear products 
of artificial joint prostheses." J Biomed Mater Res 11(2): 157-64. 

Wilson, M. J. and R. N. Villar (2011). "Hip replacement in the athlete: is there a role?" Knee 
Surg Sports Traumatol Arthrosc 19(9): 1524-30. 

Zolotarevova, E., G. Entlicher, et al. (2010). "Distribution of polyethylene wear particles and 
bone fragments in periprosthetic tissue around total hip joint replacements." Acta 
Biomater 6(9): 3595-600. 

www.intechopen.com



Recent Advances in Arthroplasty

Edited by Dr. Samo Fokter

ISBN 978-953-307-990-5

Hard cover, 614 pages

Publisher InTech

Published online 27, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The purpose of this book was to offer an overview of recent insights into the current state of arthroplasty. The

tremendous long term success of Sir Charnley's total hip arthroplasty has encouraged many researchers to

treat pain, improve function and create solutions for higher quality of life. Indeed and as described in a special

chapter of this book, arthroplasty is an emerging field in the joints of upper extremity and spine. However,

there are inborn complications in any foreign design brought to the human body. First, in the chapter on

infections we endeavor to provide a comprehensive, up-to-date analysis and description of the management of

this difficult problem. Second, the immune system is faced with a strange material coming in huge amounts of

micro-particles from the tribology code. Therefore, great attention to the problem of aseptic loosening has

been addressed in special chapters on loosening and on materials currently available for arthroplasty.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jiri Gallo, Yrjö T. Konttinen, Stuart B. Goodman, Jacob P. Thyssen, Emmanuel Gibon, Jukka Pajarinen, Yuya

Takakubo, Peter Schalock, Zygmunt Mackiewicz, Eemeli Jämsen, Martin Petrek, Rihard Trebse, Andrei Coer

and Michiaki Takagi (2012). Aseptic Loosening of Total Hip Arthroplasty as a Result of Local Failure of Tissue

Homeostasis, Recent Advances in Arthroplasty, Dr. Samo Fokter (Ed.), ISBN: 978-953-307-990-5, InTech,

Available from: http://www.intechopen.com/books/recent-advances-in-arthroplasty/aseptic-loosening-of-total-

hip-arthroplasty-as-a-result-of-local-failure-of-tissue-homeostasis



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


