528 research outputs found

    Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase).

    Get PDF
    NAD(P)H:quinone oxidoreductase (NQO1, EC 1.6.99.2) is an obligate two-electron reductase that can either bioactivate or detoxify quinones and has been proposed to play an important role in chemoprevention. We have previously characterized a homozygous point mutation in the BE human colon carcinoma cell line that leads to a loss of NQO1 activity. Sequence analysis showed that this mutation was at position 609 of the NQO1 cDNA, conferring a proline to serine substitution at position 187 of the NQO1 enzyme. Using polymerase chain reaction (PCR) analysis, we have found that the H596 human non-small-cell lung cancer (NSCLC) cell line has elevated NQO1 mRNA, but no detectable enzyme activity. Sequencing of the coding region of NQO1 from the H596 cells showed the presence of the identical homozygous point mutation present in the BE cell line. Expression and purification of recombinant wild-type and mutant protein from E. coli showed that mutant protein could be detected using immunoblot analysis and had 2% of the enzymatic activity of the wild-type protein. PCR and Northern blot analysis showed moderate to low levels of expression of the correctly sized transcript in the mutant cells. Immunoblot analysis also revealed that recombinant mutant protein was immunoreactive; however, the mutant protein was not detected in the cytosol of either BE or H596 cells, suggesting that the mutant proteins were either not translated or were rapidly degraded. The absence of any detectable, active protein, therefore, appears to be responsible for the lack of NQO1 activity in cells homozygous for the mutation. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for the mutation at position 609 conducted on 90 human lung tissue samples (45 matched sets of tumour and uninvolved tissue) revealed a 7% incidence of individuals homozygous for the mutation, and 42% heterozygous for the mutation. These data suggest that the mutation at position 609 represents a polymorphism in an important xenobiotic metabolizing enzyme, which has implications for cancer therapy, chemoprevention and chemoprotection

    Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (\u3ci\u3eApis mellifera\u3c/i\u3e)

    Get PDF
    Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B, and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies

    Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (\u3ci\u3eApis mellifera\u3c/i\u3e)

    Get PDF
    Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B, and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies

    Latent states extraction through Kalman Filter for the prediction of heart failure decompensation events

    Full text link
    [EN] Cardiac function deterioration of heart failure patients is frequently manifested by the occurrence of decompensation events. One relevant step to adequately prevent cardiovascular status degradation is to predict decompensation episodes in order to allow preventive medical interventions.In this paper we introduce a methodology with the goal of finding onsets of worsening progressions from multiple physiological parameters which may have predictive value in decompensation events. The best performance was obtained for the model composed by only two features using a telemonitoring dataset (myHeart) with 41 patients. Results were achieved by applying leave-one-subject-out validation and correspond to a geometric mean of 83.67%. The obtained performance suggests that the methodology has the potential to be used in decision support solutions and assist in the prevention of this public health burden.The authors acknowledge the financial support of the international project Link (H2020-692023).Nunes, D.; Rocha, T.; Traver Salcedo, V.; Teixeira, C.; Ruano, M.; Paredes, S.; Carvalho, P.... (2019). Latent states extraction through Kalman Filter for the prediction of heart failure decompensation events. IEEE. 3947-3950. https://doi.org/10.1109/EMBC.2019.8857591S3947395

    Studying monogenetic volcanoes with a Terrestrial Laser Scanner: Case study at Croscat volcano (Garrotxa Volcanic Field, Spain)

    Get PDF
    Erosional processes (natural or anthropogenic) may partly destroy the relatively small-sized volcanic edifices characteristic of monogenetic volcanic zones, leaving their internal structure well exposed. Nevertheless, the study of these outcrops may be extremely challenging due to restricted accessibility or safety issues. Digital representations of the outcrop surface have been lately used to overcome such difficulties. Data acquired with terrestrial laser scanning instruments using Light Detection and Ranging technology enables the construction of such digital outcrops. The obtained high-precision 3-D terrain models are of greater coverage and accuracy than conventional methods and, when taken at different times, allow description of geological processes in time and space. Despite its intrinsic advantages and the proven satisfactory results, this technique has been little applied in volcanology-related studies. Here, we want to introduce it to the volcanological community together with a new and user-friendly digital outcrop analysis methodology for inexperienced users. This tool may be useful, not only for volcano monitoring purposes, but also to describe the internal structure of exposed volcanic edifices or to estimate outcrop erosion rates that may be helpful in terms of hazard assessment or preservation of volcanic landscapes. We apply it to the Croscat volcano, a monogenetic cone in the La Garrotxa Volcanic Field (Catalan Volcanic Zone, NE Spain), quarrying of which leads to a perfect view of its interior but restricts access to its uppermost parts. Croscat is additionally one of the most emblematic symbols of the La Garrotxa Volcanic Field Natural Park, and its preservation is a main target of the park administration

    Systematic Definition of Protein Constituents along the Major Polarization Axis Reveals an Adaptive Reuse of the Polarization Machinery in Pheromone-Treated Budding Yeast

    Get PDF
    Polarizing cells extensively restructure cellular components in a spatially and temporally coupledmanner along the major axis of cellular extension. Budding yeast are a useful model of polarized growth, helping to define many molecular components of this conserved process. Besides budding, yeast cells also differentiate upon treatment with pheromone from the opposite mating type, forming a mating projection (the ‘shmoo’) by directional restructuring of the cytoskeleton, localized vesicular transport and overall reorganization of the cytosol. To characterize the proteomic localization changes ac-companying polarized growth, we developed and implemented a novel cell microarray-based imaging assay for measuring the spatial redistribution of a large fraction of the yeast proteome, and applied this assay to identify proteins localized along the mating projection following pheromone treatment. We further trained a machine learning algorithm to refine the cell imaging screen, identifying additional shmoo-localized proteins. In all, we identified 74 proteins that specifically localize to the mating projection, including previously uncharacterized proteins (Ycr043c, Ydr348c, Yer071c, Ymr295c, and Yor304c-a) and known polarization complexes such as the exocyst. Functional analysis of these proteins, coupled with quantitative analysis of individual organelle movements during shmoo formation, suggests a model in which the basic machinery for cell polarization is generally conserved between processe

    Deciphering the evolution of Deception Island's magmatic system

    Get PDF
    Deception Island (South Shetland Islands) is one of the most active volcanoes in Antarctica, with more than 20 explosive eruptive events registered over the past two centuries. Recent eruptions (1967, 1969, and 1970) and the volcanic unrest episodes that happened in 1992, 1999, and 2014-2015 demonstrate that the occurrence of future volcanic activity is a valid and pressing concern for scientists, technical and logistic personnel, and tourists, that are visiting or working on or near the island. We present a unifying evolutionary model of the magmatic system beneath Deception Island by integrating new petrologic and geochemical results with an exhaustive database of previous studies in the region. Our results reveal the existence of a complex plumbing system composed of several shallow magma chambers (≤10 km depth) fed by magmas raised directly from the mantle, or from a magma accumulation zone located at the crust-mantle boundary (15-20 km depth). Understanding the current state of the island's magmatic system, and its potential evolution in the future, is fundamental to increase the effectiveness of interpreting monitoring data during volcanic unrest periods and hence, for future eruption forecasting

    Deciphering the evolution of Deception Island's magmatic system

    Full text link
    Deception Island (South Shetland Islands) is one of the most active volcanoes in Antarctica, with more than 20 explosive eruptive events registered over the past two centuries. Recent eruptions (1967, 1969, and 1970) and the volcanic unrest episodes that happened in 1992, 1999, and 2014-2015 demonstrate that the occurrence of future volcanic activity is a valid and pressing concern for scientists, technical and logistic personnel, and tourists, that are visiting or working on or near the island. We present a unifying evolutionary model of the magmatic system beneath Deception Island by integrating new petrologic and geochemical results with an exhaustive database of previous studies in the region. Our results reveal the existence of a complex plumbing system composed of several shallow magma chambers (≤ 10 km depth) fed by magmas raised directly from the mantle, or from a magma accumulation zone located at the crust-mantle boundary (15-20 km depth). Understanding the current state of the island's magmatic system, and its potential evolution in the future, is fundamental to increase the effectiveness of interpreting monitoring data during volcanic unrest periods and hence, for future eruption forecasting

    Setting priorities for EU healthcare workforce IT skills competence improvement

    Get PDF
    A major challenge for healthcare quality improvement is the lack of IT skills and knowledge of healthcare workforce as well as their ambivalent attitudes towards IT. This paper identifies and prioritises actions needed to improve the IT skills of healthcare workforce across the EU. 46 experts, representing different fields of expertise in healthcare and geolocations systematically list and scored actions that would improve IT skills among healthcare workforce. The Child Health and Nutrition Research Initiative methodology was used for research priority-setting. The participants evaluated the actions using the following criteria: feasibility, effectiveness, deliverability, and maximum impact on IT skills improvement. The leading priority actions were related to appropriate training, integrating eHealth in curricula, involving healthcare workforce in the eHealth solution development, improving awareness of eHealth and learning arrangement. As the different professionals’ needs are prioritised, healthcare workforce should be actively and continuously included in the development of eHealth solutions
    corecore